01;02;03;04 Колебательная накачка молекул H₂ в потоке водорода, протекающего сквозь цезий-водородный разряд

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 2 июня 1997 г.)

Рассчитывается колебательная функция распределения молекул H_2 , образующаяся в потоке молекулярного водрода. Предполагается, что поток водорода течет в плоском канале и последовательно проходит сквозь две секции. В первой секции реализуется цезий-водородный разряд и осуществляется предварительная колебательная накачка молекул H_2 . Во второй секции, где разряд отсутствует, в процессе v-v-обмена происходит существенное увеличение концентрации колебательно-возбужденных молекул в определенной, верхней части колебательного спектра. Обсуждается возможность использования созданной таким образом колебательной функции распределения для целей генерации отрицательных ионов водорода в результате последующего диссоциативного прилипания электронов к колебательно-возбужденным молекулам.

1. В настоящее время в связи с целым рядом приложений (ионные источники, плазмохимия и др.) проявляется весьма существенный интерес к генерации колебательновозбужденных молекул водорода. Как правило, генерация таких молекул осуществляется в различного типа разрядах, содержащих либо чисто водородную плазму, либо водородную плазму с примесью легко ионизующихся компонент, в частности цезия. В зависимости от конкретных приложений используются различные схемы колебательного возбуждения H₂. Например, в существующих объемных источниках отрицательных ионов водорода, в которых генерация ионов Н- осуществляется в процессе диссоциативного прилипания (ДП) тепловых электронов к колебательно-возбужденным молекулам H₂ в основном электронном состоянии $X^{1}\Sigma_{\rho}^{+}$ [1], колебательное возбуждение часто осуществляется каскадным путем за счет излучательного девозбуждения синглетных электронновозбужденных состояний $B^1 \Sigma_u^+$, $C^1 \Pi_u^*$ и др. [2]. В источниках ионов Н-, использующих такую двухступенчатую схему генерации колебательно-возбужденных молекул $H_2(X^1\Sigma_p^+)$, процессы колебательного возбуждения и ДП, как правило, разделены в пространстве [3-5]. Такое разделение достигается либо путем организации отдельной разрядной камеры, в которой образуются возбужденные молекулы H₂ (двухкамерный источник), либо посредством создания так называемого гибридного источника [3,4], в котором это разделение достигается в единой разрядной камере, где быстрые катодные электроны, возбуждающие молекулы H₂, удерживаются вблизи стенок камеры за счет дрейфа в скрещенных Е-, Н-полях. При этом ионы H⁻ генерируются в процессе ДП в центральной части камеры, где быстрые или горячие тепловые электроны, разрушающие ионы Н-, отсутствуют, а электронная температура $T_e \sim 1 \, \mathrm{eV}$, т.е. она оптимальна для процессов ДП [6]. Среди ряда работ, посвященных теории двухкамерных и гибридных источников, отметим [4], где проведена оптимизация источников H⁻ и D⁻ по току разряда и электронной температуре и выполнено сравнение теории с экспериментальными данными.

Отметим, что пространственное разделение процессов колебательного возбуждения H₂ и процессов генерации ионов H⁻ может быть весьма целесообразным еще по одной причине, на которой мы остановимся здесь в связи с возможным использованием для генерации колебательно-возбужденных молекул Н2 низковольтного (НВ) цезий-водородного разряда [7]. Поскольку такой разряд может быть реализован при сравнительно высокой концентрации как электронов, так и молекул Н2 (см., например, [8,9]), то в нем процессы колебательного возбуждения могут интенсивно протекать непосредственно в основном электронном состоянии $X^1\Sigma_g^+$ как в процессах e-v-, так и v-v-обмена. В то же время в ряде приложений, в частности в источниках Н⁻ для целей УТС, желательно иметь сравнительно низкое давление водорода в той области, из которой извлекаются ионы Н⁻. По этой причине также выгодно разделить в пространстве генерацию колебательно-возбужденных молекул (первая камера с относительно высоким давлением) и образование и последующее извлечение ионов Н- (вторая камера с низким давлением). Нужный перепад давления между камерами можно осуществить за счет истечения со звуковой скоростью V_s колебательно накачанного водорода из первой камеры во вторую.

В настоящей работе будет показано, что при соответствующей организации течения колебательная функция распределения (КФР) истекающих из первой камеры молекул H₂ может быть заметно улучшена, в частности, и в той области колебательных чисел v, которая существенна для процессов ДП. Предварительные результаты опубликованы в [10].

2. Рассматриваемаая здесь модель течения иллюстрируется рис. 1, *а*. Поток молекулярного водорода течет в канале между двумя параллельными стенками и проходит последовательно сквозь секции *I* и *II* (протяженностью соответственно h_1 и h_2). В секции *I* реализуется НВ цезий-водородный разряд между двумя плоскими электродами. Здесь осуществляется первоначальная колебательная накачка водорода. Затем поток водорода

Рис. 1. *а* — схема течения водорода в канале: *I* — разрядная зона, *II* — течение колебательно-накачанного газа в канале; *b* — распределение по длине канала основных параметров течения: *I* — *p*, 2 — *N*_{H2}, 3 — *N*_H, 4 — *V*, 5 — $\langle E_v \rangle$, 6 — $T_v = (E_1/k)/\ln(N_0/N_1)$. Параметры разряда: *L* = 0.3 cm, $h_1 > 1$ cm, $N_{H_2}^{(0)} = 3 \cdot 10^{16}$ cm⁻³, $N_H^{(0)} = 1.62 \cdot 10^{14}$ cm⁻³, $T_e = 0.88$ eV, $N_{Cs}^{(0)} = 7 \cdot 10^{13}$ cm⁻³, $n_e = 2.07 \cdot 10^{13}$ cm⁻³, $N_{H^-}^{(0)} = 5.1 \cdot 10^{12}$ cm⁻³, $\langle E_v \rangle = 0.366$ eV, $T_v = 0.59$ eV. Температура газа в разрде $T_0 = 0.08$, в канале T = 0.04 eV.

проникает в секцию II, изолированную от секции I. На срезе канала ($x = h_2$) секции II происходит истечение водорода со скоростью звука V_s . Стенки секции II поддерживаются при температуре, близкой к комнатной. В этой секции в процессе нерезонансного v-v-обмена в холодном газе происходит усиление колебательной накачки молекул H_2 в определенной, верхней части колебательного спектра.

Изменение давления p(x) и концентрации $N_{\rm H_2}(x)$ молекулярного водорода по длине канала в секции IIможно приближенно определить по аналогии с вязким течением газа в трубе круглого сечения (ср. с [11]). Для достаточно длинного $(h_2/L \gg 1)$ канала, усредняя газодинамическую скорость [12, с.81] по поперечному сечению, получаем следующее выражение для средней скорости V течения в плоском канале:

$$V = -\frac{L^2}{12\eta} \frac{dp}{dx},\tag{1}$$

где η — вязкость молекулярного водорода.

Полагая, что на срезе канала $V = V_s$, получаем распределение давления молекулярного водорода по длине канала

$$p(x) = \left[p_0^2 - \left(p_0^2 - p_s^2\right)x/h_2\right]^{1/2}.$$
 (2)

Здесь $p_0 = p(0)$ — давление водорода на входе в канал, т. е. приближенно давление в разряде; p_s — давление на срезе. Длина h_2 и ширина L канала связаны соотношением

$$h_2/L = (\mathbf{R}_s/24)(c_p/c_v)^{-1} [(p_0/p_s)^2 - 1],$$
 (3)

где $R_s = \rho_s LV_s/\eta$ — число Рейнольдса, рассчитанное по поперечному сечению *L* канала и по параметрам потока на срезе; $\rho_s = M_{H_2} p_s/kT$ — плотность водорода при $x = h_2$; *T* — температура газа в канале.

Параметры плазмы в исходном НВ разряде (секция I) и параметры газа в канале (секция II) считалось однородными по сечению. В качестве примера на рис. 1, b приведено распределение по длине канала в секции II основных параметров течения: давления p, концентрации $N_{\rm H_2}$ молекулярного водорода и скорости течения V, а также средней колебательной энергии $\langle E_v \rangle$ молекул, их колебательной температуры T_v , определенной через заселенности N_0 и N_1 основного и первого возбужденного колебательных уровней, концентрации $N_{\rm H}$ атомарного водорода (см. ниже).

3. Остановимся на основных моментах расчета компонентного состава плазмы и КФР в исходном НВ разряде. Расчет параметров плазмы НВ цезий-водородного разряда проводился по методике [13], разработанной для однородного газоразрядного промежутка. Рассматривалась достаточно плотная плазма разряда, когда катодный пучок релаксирует в плазме на парных межэлектронных столкновениях и энергия пучка расходуется на нагрев тепловых электронов [14]. Расчет проводился в два этапа [9]. На первом этапе при заданной электронной температуре Т_е решалась система уравнений, определяющая электронно-колебательную кинетику в разряде. Из решения этой системы находились все параметры плазмы, включая КФР $f_{\nu}^{(0)}$ молекул H₂ и потоки ионов j_1 , отводимые из плазмы на каждый из электродов. На втором этапе при известных параметрах плазмы разрешалась система граничных условий, описывающая баланс заряженных частиц и энергии электронов на прикатодной и прианодной границах плазмы. Из решения этой системы определялись прикатодный φ_1 и прианодный φ_2 потенциальные барьеры в ленгмюровских слоях и потоки электронов j_{e1} и j_{e2} , отводимые из плазмы на катод и анод. В результате находились напряжение $U = \varphi_1 - \varphi_2$ и ток разряда $j = j_{e2} - j_i$, соответствующие определенному на первом этапе набору параметров плазмы. Отметим одно существенное обстоятельство, которое отличает исследуемые в настоящей работе режимы горения НВ цезий-водородного разряда в плотной, столкновительной плазме от аналогичных режимов, которые теоретически исследовались ранее, в частности от [13]. Рассматриваемые в настоящей работе режимы горения НВ Cs-H2 разряда характеризуются сравнительно небольшими токами эмиссии $j_s < 10 \,\mathrm{A/cm^2}$, что весьма облегчает их практическую реализацию. Это иллюстрируется рис. 2, где приведены зависимости φ_1, φ_2, U и j от j_s . Видно, что типичный НВ режим, в котором $\varphi_1 < E_d/q$ (E_d порог прямой диссоциации H₂ электронным ударом), реализуется в интервале умеренных значений тока эмиссии катода 5 $< j_s < 10$ A/cm². Что касается нужной колебательной накачки молекул Н2 на высоких колебательных уровнях, то теперь она достигается не только в разряде, но также за счет последующего увеличения концентрации N_v колебательно-возбужденных молекул при соответствующей организации течения в канале.

Вследствие достаточно малой скорости V₀ течения газа в разрядной зоне расчет НВ разряда проводился по методике, разработанной для газоразрядного промежутка с покоящейся плазмой. Вместе с тем следует проанализировать два обстоятельства, специфические для разряда в движущейся плазме. Во-первых, это — относительно большое время колебательной релаксации молекул, что в ряде случаев приводит к сравнительно медленному формированию КФР $f_v^{(0)}$ молекул H₂ в разряде. Для учета этого обстоятельства при расчетных параметрах плазмы, характерных для рассматриваемого цезий-водородного разряда, рассчитывалось установление КФР молекул. Методика расчета изложена в [15]. Дополнительно к [15] в настоящих расчетах в процессе колебательной релаксации учитывалась зависимость от времени сравнительно медленно устанавливающихся концентраций атомов водорода N_H и отрицательных ионов N_H-. На рис. З результаты расчетов представлены в виде отношений текущей КФР $f_{\nu}(t)$ к ее установившемуся в разряде значению $f_v^{(0)} \equiv f_v(\infty)$. Расчеты выполнены для двух значений поступательной температуры Т₀ газа в разряде. Видно, что характер колебательной релаксации зависит от T_0 (ср. рис. 3, *а* и *b*). При более высокой температуре T_0 на зависимостях $f_v(t)/f_v(\infty)$ появляются характерные максимумы, свидетельствующие о немонотонном характере релаксации заселенностей $N_{\nu}(t)$ верхних уровней к своему установившемуся значению $N_v^{(0)} \equiv N_v(\infty)$. Эти немонотонности связаны с *v*-*t*-обменом, который при повышенной температуре То газа проявляется сильнее и начинает существенно влиять на заселенности верхних колебательных уровней, заметно уменьшая их в конце процесса колебательной релаксации. Отметим, что по этой причине при более высокой температуре газа ($T_0 = 0.08 \, \text{eV}$) установившееся значение заселенностей $N_{\nu}^{(0)}$ на верхних колебательных уровнях, а вместе с ними и концентрации атомов $N_{\rm H}^{(0)}$ оказываются заметно ниже, чем при низкой температуре $(T_0 = 0.026 \,\mathrm{eV})$. Время полной колебательной релакса-

Рис. 2. Зависимость напряжения, тока разряда и приэлектродных потенциальных барьеров в ленгмюровских слоях от тока эмиссии катода: I - U, 2 - j, $3 - \varphi_1$, $4 - \varphi_2$. Параметры разряда: L = 0.3 cm, $h_1 > 1 \text{ cm}$, $N_{\text{H}_2}^{(0)} = 3 \cdot 10^{16} \text{ cm}^{-3}$, $N_{\text{H}}^{(0)} = 1.8 \cdot 10^{14} \text{ cm}^{-3}$, $T_e = 0.65 \text{ eV}$, $N_{\text{Cs}}^{(0)} = 10^{14} \text{ cm}^{-3}$, $n_e = 3.26 \cdot 10^{13} \text{ cm}^{-3}$, $N_{\text{H}^-}^{(0)} = 3.8 \cdot 10^{12} \text{ cm}^{-3}$, $\langle E_v \rangle = 0.335 \text{ eV}$, $T_v = 0.55 \text{ eV}$.

ции в обоих примерах составляет $\tau_{\nu}^{(0)} \cong 15 \,\mu$ s, а соответствующая длина полной колебательной релаксации $l_{\nu}^{(0)} = V_0 \tau_{\nu}^{(0)} \cong 1 \,\mathrm{cm}.$

Во-вторых, специфика разряда в движущейся плазме проявляется в довольно медленном установлении поступательной температуры То газа в разряде. Это обстоятельство существенно, поскольку, как указывалось выше, поступательная температура Т₀ заметно влияет на процесс колебательной релаксации и характер установившегося колебательного распределения в разряде. В рассмариваемых условиях разогрев газа в разрядном промежутке связан в основном не с тепловыделением в плазме разряда (при упругих столкновениях электронов с тяжелыми частицами или при v-t- и нерезонансном v-v-обмене), а с контактом газа с горячим эмиттером, т.е. с образованием вблизи эмиттера расширяющегося теплового пограничного слоя. Оценивая длину h_T эмиттера, при которой толщина δ_T теплового пограничного слоя сравнивается с межэлектродным расстояни-

Рис. 3. Колебательная релаксация молекул H₂ в плазме низковольтного разряда (на кривых указаны номера колебательных уровней): $N_{\rm H_2}^{(0)} = 3 \cdot 10^{16} \,\mathrm{cm}^{-3}$, $N_{\rm Cs}^{(0)} = 10^{14} \,\mathrm{cm}^{-3}$, $T_e = 0.8 \,\mathrm{eV}$, $n_e = 5.8 \cdot 10^{13}$ (*a*), $5.4 \cdot 10^{13} \,\mathrm{cm}^{-3}$ (*b*); $N_{\rm H}^{(0)} = 7.8 \cdot 10^{14}$ (*a*), $3.3 \cdot 10^{14} \,\mathrm{cm}^{-3}$ (*b*); $N_{\rm H^{-}}^{(0)} = 6.6 \cdot 10^{12}$ (*a*), $7 \cdot 10^{12} \,\mathrm{cm}^{-3}$ (*b*); $T_0 = 0.026$ (*a*), $0.08 \,\mathrm{eV}$ (*b*).

ем L [16], получаем $h_T = \theta \cdot \Pr \cdot \mathbb{R}_0 L$, где $\Pr = \eta_0 c_p / \kappa_0$ число Прандтля; $R_0 = \rho_0 L V_0 / \eta_0$ — число Рейнольдса, рассчитанное по параметрам потока в разрядной зоне $(\kappa_0, \eta_0 \, \text{и} \, \rho_0 - \text{теплопроводность, вязкость и плотность})$ водорода в газоразрядном промежутке; c_p — удельная теплоемкость при постоянном давлении); $\Theta \sim 0.1$ численный множитель. В результате при типичных параметрах разряда и течения, рассматриваемых здесь, температура То газа, характерная для стационарного разряда, устанавливается в разрядной зоне на расстоянии $h_T \cong 0.2 \,\mathrm{cm}$, т.е. быстрее, чем КФР. Остальные времена и соответствующие характерные длины (максвеллизации электронов, ионизации атомов Cs [17] и др.) оказываются заметно меньше, чем рассмотренные выше. Таким образом, для того чтобы в разрядной зоне плазма полностью успела срелаксировать к состоянию, характерному для стационарного НВ разряда, в рассматриваемых условиях длина разрядной зоны должна удовлетворять условию $h_1 > 1 \,\mathrm{cm}$. Это условие предполагается ниже выполненным.

Для дальнейшего существенно задание температуры *T* газа в канале, т.е. в секции *II*. Поскольку вероятности заселения высоковозбужденных колебательных уровней

Журнал технической физики, 1998, том 68, № 10

за счет нерезонансного v-v-обмена существенно увеличиваются (по сравнению с соответствующими вероятностями колебательного девозбуждения) при понижении поступательной температуры Т, целесообразно, чтобы температура газа в канале была достаточно низкой. В конкретных расчетах мы будем полагать, что стенки канала находятся при комнатной температуре, а температура T газа в канале несколько превышает комнатную, что приближенно учитывает некоторый подогрев газа в канале при v-t- и нерезонансном v-v-обмене. Ниже в большинстве расчетов $T = 0.03 - 0.04 \, \text{eV}$. Поскольку длина h_T , на которой релаксирует газовая температура, весьма мала по сравнению с протяженностью h_2 канала, то мы будем пренебрегать изменением давления р на длине $\sim h_T$ (рис. 1, *b*) и будем вводить скачок газовой температуры $\Delta T = T_0 - T$ на границе (x = 0) газоразрядного промежутка (I) с каналом (II). При непрерывных на границе давлении р и потоках нейтралов это приводит к соответствующим скачкам концентрации $N_{\rm H_2}$ и $N_{\rm H}$ и скорости течения V на границе. При этом колебательная функция распределения f_v и степень диссоциации водорода остаются непрерывными. Значения N_{H2}, N_H и V в разрядной зоне, т.е. до скачка, обозначаются

Рис. 4. Изменение колебательной функции распределения при течении водорода в канале: a — по длине канала (на кривых указаны номера колебательных уровней); b — колебательная функция распределения в начале и в конце канала: $1 - f_v(0)$, $2 - f_v(h_2)$; $h_2 = 3.5$ сm; параметры разряда и температура газа в канале те же, что и на рис. 1, b.

как $N_{\rm H_2}^{(0)}$, $N_{\rm H}^{(0)}$ и V_0 . Соответствующие величины за скачком температуры обозначаются как $N_{\rm H_2}(0)$, $N_{\rm H}(0)$ и V(0).

4. КФР молекул H₂ в канале секции *II* определялась из решения системы уравнений

$$\frac{d}{dx}(N_{\nu}V) = I_{\nu}^{(\nu\nu)}\{N_{\nu}\} + I_{\nu M}^{(\nu\nu)}\{N_{\nu}\} + I_{\nu A}^{(\nu\nu)}\{N_{\nu}\} + I_{\nu}^{(w)}\{N_{\nu}\}$$
$$(\nu = 0, 1, 2, \dots, 14),$$
(4)

где $N_v(x)$ — концентрация колебательно-возбужденных молекул в канале на уровне *v*.

Слагаемые в правой части (4) последовательно учитывают v-v-обмен, v-t-обмен с молекулами и атомами водорода и колебательную релаксацию молекул на стенках канала. Соответствующие выражения формулируются единообразно как для разрядной секции *I*, так и для канала *II*. Слагаемые, описывающие v-v- и v-t-обмен, записываются так же, как в [8,13].

Остановимся отдельно на слагаемых $I_v^{(w)}\{N_v\}$, описывающих взаимодействие молекул со стенками канала. В противоположность разрядной секции *I*, в канале *II*, где e-v-обмен отсутствует, конкретный вид слагаемых $I_{\nu}^{(w)}$ весьма существен, так как сильно влияет на формирующуюся там КФР $f_{\nu}(x)$. Учет потерь колебательновозбужденных молекул на стенках удобно описывать путем введения соответствующего эффективного времени жизни τ_{ν} , так что $I_{\nu}^{(w)}\{N_{\nu}\} = -N_{\nu}/\tau_{\nu}$. Для покоящегося газа, находящегося в зазоре с параллельными плоскими стенками, выражение для τ_{ν} может быть записано по аналогии с [18] в виде

$$\tau_{\nu} = \frac{\Lambda^2}{D_{\rm sd}} + \frac{L}{\bar{\nu}} \frac{2 - \gamma_{\nu}}{\gamma_{\nu}}.$$
 (5)

Здесь $\Lambda = L/\pi$ — эффективная длина диффузии для плоской геометрии; $D_{\rm sd} = (3\pi/16\sqrt{2})v l_{\rm H_2}$ — коэффициент самодиффузии молекул H₂ [19]; $v = \sqrt{8kT/\pi M_{\rm H_2}}$; $l_{\rm H_2} = 1/N_{\rm H_2}\bar{\sigma}^{(1)}$ — длина свободного пробега молекулы H₂; γ_v — вероятность исчезновения на стенке молекулы H₂, возбужденной на уровень v. Первое слагаемое в правой части (5) существенно превышает второе, если $\gamma_v \gg (3\pi^2/8\sqrt{2})(l_{\rm H_2}/\Lambda)$. В этом случае $\tau_v = \tau_d \equiv \Lambda^2/D_{\rm sd}$, где τ_d — время диффузионного ухода молекулы на стенку, которое на зависит от γ_v . Так как $l_{\rm H_2}/\Lambda \ll 1$, то данный предел во всяком случае реализуется при $\gamma_v \sim 1$. В противоположном предельном

Рис. 5. То же, что на рис. 4: a — по длине канала (у кривых — номера колебательных уровней); b — колебательные функции распределения и относительный вклад различных уровней в процесс диссоциативного прилипания в начале и в конце канала: $I - f_{\nu}(0), 2 - f_{\nu}(h_2), 3 - \Gamma_{\nu}(0, 07 \text{ eV}), 4 - \Gamma_{\nu}(h_2, 0.7 \text{ eV}), 5 - \Gamma_{\nu}(h_2, 0.2 \text{ eV}); c$ — начальный этап колебательной релаксации в канале: параметры разрядной плазмы те же, что для рис. 2; температура газа в разряде $T_0 = 0.06 \text{ eV}$, в канале T = 0.03 eV; $j_s = 4.5 \text{ A/cm}^2, j \cong 5 \text{ A/cm}^2, U \cong 7.9 \text{ V}, \varphi_1 = 8.65 \text{ V}, \varphi_2 = 0.75 \text{ V}.$

случае, когда γ_{ν} весьма мало́ ($\gamma_{\nu} \ll (3\pi^2/8\sqrt{2})(l_{\rm H_2}/\Lambda)$), $\tau_v = 2L/(\gamma_v v)$ и время жизни существенно превышает время диффузии т_d. В Приложении показано, что при выполнении определенных условий выражение типа $I_v^{(w)}\{N_v\} = -N_v/\tau_v$, в котором τ_v определяется из (5), правильно описывает уход частиц (молекул, атомов и т.п.) из потока газа на стенки. Поскольку второе слагаемое в (5) в пределе весьма малых γ_{ν} довольно очевидно и его использование применительно к покоящемуся или движущемуся газу не требует обоснования, то рассмотрение проведено в Приложении на примере вычисления потерь частиц из потока в противоположном, диффузионном пределе, когда $\gamma_v \sim 1$ и $\tau = \tau_d$. Конкретные расчеты выполнены на примере вычисления потерь атомарного водорода, диффундирующего из потока на стенки канала в секции И. Коэффициент диффузии D₁₂ атомарного водорода в молекулярном заимствован из [20].

5. Остановимся на вычислении вероятностей γ_{ν} поверхностной дезактивации молекул на стенках канала. Расчеты, выполненные в настоящей работе как с учетом, так и без учета поверхностной дезактивации молекул H₂ с использованием выражения (5), показывают сильную зависимость КФР $f_{\nu}(h_2)$ молекул H₂ на высоких колебательных уровнях от γ_{ν} . Это приводит к необходимости учета конкретного механизма взаимодействия молекул H₂ со стенками при теоретическом рассмотрении течения колебательно-возбужденного водорода в канале.

Естественно, что для уменьшения потерь колебательно-возбужденных молекул на стенках необходимо, чтобы стенки канала были выполнены из материала с возможно бо́льним значением потенциального барьера для адсорбции молекулярного водорода на поверхности. Ниже в качестве примера такого материала рассматривается медь, для которой найдены значения барьера в интервале 0.8–1.5 eV [21–24]. Наиболее полные известные нам

Рис. 6. То же, что на рис. 5, но без учета колебательной дезактивации молекул на стенках канала.

данные о вероятностях поверхностной дезактивации молекул Н₂ на меди содержатся в [23]. В [23] показано, что для рассматриваемых в настоящей работе сравнительно малых кинетических энергий ($E_{\rm kin}$ < 0.1 eV) взаимодействующих со стенкой молекул H₂ поверхностная дезактивация связана с туннелированием молекулы H₂ сквозь поверхностный потенциал барьер, и определена вероятность такого туннелирования $w_v(E_{\rm kin})$ как функция колебательного квантового числа v для v <10 и кинетической энергии $E_{\rm kin}$ молекулы для $E_{\rm kin} > 0.1 \, {\rm eV.} \, {\rm B}$ настоящей работе в расчетах полагалось $\gamma_v = w_v(E_{\rm kin})$. При этом данные [23] экстраполировались в область колебательных чисел v = 11-14. Поскольку экстраполяция данных [23] в область $E_{kin} < 0.1 \, \text{eV}$ затруднительна, то в настоящей работе в расчетах использовались значения w_v , рассчитанные для $E_{\rm kin} = 0.1 \, {\rm eV}$, что для ряда значений v заметно увеличивает вероятность w_v поверхностной дезактивации молекул. Предполагалось, что при стационарном течении газа взаимодействие со стенкой не меняет полное число молекул H₂ в потоке, т.е. уменьшение числа колебательно-возбужденных молекул при их релаксации на стенке компенсируется десорбцией со стенки молекул в основном состоянии

(v = 0). В [23] получены две совокупности данных, соответствующие двум различным ориентациям оси молекулы по отношению к поверхности (параллельно и перпендикулярно поверхности) при нахождении молекулы на вершине потенциального барьера на границе твердое тело–газ. Расчеты показали, что результаты слабо зависят от ориентации молекулы. Нами использовались данные, относящиеся к тому случаю, когда молекула, находящаяся на вершине потенциального барьера, ориентирована перпендикулярно поверхности.

6. Рассмотрим результаты расчетов. В расчетах одновременно с определением КФР молекул H_2 из системы уравнений (4) находилось распределение концентрации $N_{\rm H}(x)$ атомов водорода по длине канала (см. Приложение), которое в соответствии с (П8) определялось из уравнения

$$\frac{d}{dx}(N_{\rm H}V) = -N_{\rm H}/\tau_d^{\rm (H)}.$$
(6)

При x = 0 в качестве начальных условий к (4) и (6) использовались известная КФР $f_{\nu}^{(0)}$ и известные концентрации молекул $N_{\rm H_2}(0) = N_{\rm H_2}^{(0)} T_0/T$ и атомов

Рис. 7. Зависимость эффективной константы $\langle K_{DA}(x, T'_e) \rangle$ диссоциативного прилипания от температуры T'_e электронов (параметры разряда и течение в канале те же, что на рис. 5 и 6): I - для x = 0; $2, 3 - для x = h_2$; 2 -расчет с учетом колебательной дезактивации молекул водорода на стенках канала; 3 -без учета. Шкалы на вертикальных осях отличаются только масштабом.

 $N_{\rm H}(0) = N_{\rm H}^{(0)} T_0/T$, установившиеся за скачком температуры газа, при входе в канал. Результаты расчетов показаны на рис. 1, *b* и 4–6.

На рис. 4, a-6, a приведено отношение КФР $f_v(x)$, которая образуется при течении водорода в канале, к начальной КФР $f_{\nu}(0) = f_{\nu}^{(0)}$, образующейся в разряде. Видно, что процесс установления КФР $f_{y}(x)$ в канале можно разделить на два этапа. На первом этапе происходит резкое уменьшение заселенностей высоковозбужденных колебательных состояний, связанное с быстрой *v*-*t*-релаксацией на атомах водорода, что является следствием весьма больших констант *v*-*t*-обмена молекул Н₂ с атомами Н. На втором этапе происходит весьма сильное (для некоторых уровней на много порядков) увеличение заселенностей за счет колебательной накачки при нерезонансном *v*-*v*-обмене в охлажденном газе. Отметим, что увеличение заселенностей колебательновозбужденных молекул Н2 при v-v-обмене наблюдалось ранее в работах [25-27] в послесвечении разрядов, содержавших колебательно-возбужденный водород. На рис. 5, с в увеличенном масштабе отдельно показан начальный этап деформации КФР молекул на входе в канал. Рис. 5, *с* в основном относится к нескольким верхним уровням и иллюстрирует первоначальное возрастание (ср. с рис. 5, *a*) заселенностей самых верхних уровней за счет их рекомбинационного заселения при понижении температуры газа на величину ΔT .

Результаты, приведенные на рис. 4 и 5, получены с учетом колебательной дезактивации молекул H₂ на стенках канала. Результаты, приведенные на рис. 6, получены для тех же параметров разряда и течения, что на рис. 5, но без учета колебательной дезактивации на стенках, т.е. при $\gamma_{\nu} = 0$. Сравнение рис. 5, *a* и 6, *a* показывает, что в рассматриваемом примере учет дезактивации молекул H₂ на стенках канала примерно на два порядка уменьшает КФР $f_{\nu}(h_2)$ для тех колебательных уровней, заселенности которых наиболее интенсивно усиливаются в канале. В целом ряде других примеров отличие между собой результатов расчетов, учитывающих и не учитывающих поверхностную дезактивацию, значительно меньше. Например, при параметрах расчетов, соответствующих рис. 4, это отличие не превышает порядка.

На рис. 4, b, 6, b приведены начальные $f_{\nu}(0) = f_{\nu}^{(0)}$ и конечные $f_{\nu}(h_2)$ КФР молекул. На рис. 5, b и 6, b кроме

этого отложены величины

$$\Gamma_{\nu}(h, T'_{e}) = \frac{f_{\nu}(h)K_{\nu}(T'_{e})}{\langle K_{DA}(h, T'_{e}) \rangle},\tag{7}$$

где

$$\langle K_{DA}(h, T'_e) \rangle = \sum_{\nu} f_{\nu}(h) K_{\nu}(T'_e)$$
(8)

 — эффективная константа ДП, дающая полную скорость образовния ионов Н⁻ за счет прилипания электронов ко всем колебательным уровням.

Величина Г_v представляет собой нормированную на единицу вероятность образования иона H⁻ в процессе ДП электронов, имеющих температуру T'_{ρ} , к молекулам, возбужденным на уровень v и имеющим КФР $f_v(h)$. Здесь $K_v(T_e)$ — соответствующая константа ДП [6], h длина канала. Величина Г_v характеризует относительный вклад различных колебательных уровней в процесс ДП. Предполагается, что этот процесс реализуется в камере, куда истекает колебательно накачанный водород и где электроны распределены по Максвеллу с температурой T'_{e} . Видно, как после прохождения канала максимум Γ_{v} сдвигается в область бо́льших v, т. е. в область бо́льших значений констант ДП [6]. В настоящей работе не проводилась оптимизация параметров канала и течения с целью получения наибольшего усиления эффективной константы $\langle K_{DA}(h, T'_{e}) \rangle$ в результате прохождения канала колебательно накачанным водородом. Этому будет посвящено специальное сообщение. Здесь мы рассмотрим лишь вопрос о выборе оптимальной для диссоциативного прилипания температуры Т_e электронов в камере, куда истекает колебательно накачанный водород. На рис. 7 (ср. с рис. 8 в [4]) эффективная константа ДП отложена как функция T'_{e} для нескольких вариантов расчета: без усиления в канале (кривая 1) и после "усиления" колебательного распределения в канале (кривые 2 и 3 соответственно с учетом и без учета колебательной дезактивации молекул на стенках канала). Видно, что наибольшее усиление величины $\langle K_{DA} \rangle$ получается при низкой температуре Т_e, когда основной вклад в ДП вносят сравнительно высокие колебательные уровни $(v \cong 7-9)$, заселенности которых заметно усиливаются вследствие колебательной накачки в канале. Наиболее сильное увеличение колебательной накачки молекул Н2 в канале достигается на уровнях $v \cong 9 - 12$. Хотя эти уровни уже вносят относительно небольшой вклад в ДП, их колебательная накачка может быть весьма существенна в целом ряде плазмохимических приложений.

Таким образом, показано, что при соответствующей организации течения колебательно накачанного водорода в канале может быть получено весьма существенное увеличение заселенностей колебательных состояний молекулы водорода в достаточно высокой части колебательного спектра.

Работа выполнена при поддержке гранта INTAS № 94-316.

Авторы благодарны Ю.З. Иониху и С.М. Школьнику за полезное обсуждение.

Приложение

Диффузия атомов Н в потоке молекулярного водорода описывается уравнением

$$\mathbf{V} \cdot \nabla N_{\mathrm{H}} - D_{12} \nabla^2 N_{\mathrm{H}} = \mathbf{0}, \qquad (\Pi 1)$$

где $V \equiv V(0)$ — скорость потока на входе в канал секции *II*.

В (П1) пренебрегается рекомбинацией атомарного водорода в молекулу H_2 внутри канала [28] и изменением скорости течения V на начальном участке канала. Граничные условия к уравнению (П1) соответствуют заданию начального распределения $N_H(0, y)$ атомов на входе в канал и равенству нулю концентрации N_H на поглощающих стенках и на бесконечности

$$N_{\rm H}(x,0) = N_{\rm H}(x,L) = 0, \quad N_{\rm H}(\infty,y) = 0.$$
 (II2), (II3)

Разлагая $N_{\rm H}(x, y)$ в ряд Фурье

$$N_{\rm H}(x, y) = \sum_{k=1}^{\infty} \tilde{N}_{\rm H}(x) \sin \frac{\pi k y}{L}$$
(II4)

и подставляя (П4) в (П1), находим

$$N_{\rm H}(x, y) = \sum_{k=1}^{\infty} \tilde{N}_k(0)$$
$$\times \exp\left\{-\left[\sqrt{1 + (\delta k)^2} - 1\right] \frac{x}{\delta \Lambda}\right\} \sin \frac{ky}{\Lambda}, \quad (\Pi 5)$$

где $\delta = 2\Lambda/V\tau_d^{(\mathrm{H})}, \ \tau_d^{(\mathrm{H})} = \Lambda^2/D_{12}.$

Из (П5) определяем усредненную по сечению канала концентрацию $\langle N_{\rm H} \rangle$ атомарного водорода

$$\langle N_{\rm H} \rangle = \sum_{k=1}^{\infty} \tilde{N}_k(0) \exp\left\{-\left[\sqrt{1+(\delta k)^2} - 1\right] \frac{x}{\delta \Lambda}\right\}$$
$$\times \frac{1+(-1)^{k+1}}{\pi k}.$$
(II6)

В рассматриваемых здесь условиях $\delta < 1$ ($\delta \cong 0.5$) и существенны такие *x*, когда $x \sim V\tau_d^{(\mathrm{H})}$, т.е. $\Lambda/x \cong \delta/2$. Тогда в сумме по *k* в (Пб) достаточно учесть лишь слагаемое с *k* = 1. Это дает

$$\langle N_{\rm H} \rangle \cong \frac{2\tilde{N}_1(0)}{\pi} \exp\left[-\frac{x}{V \cdot \tau_d^{\rm (H)}}\right]$$
(II7)

И

$$\frac{dI_{\rm H}}{dx} = -\frac{\langle N_{\rm H} \rangle}{\tau_d^{\rm (H)}},\tag{\Pi8}$$

где $I_{\rm H} = V \langle N_{\rm N} \rangle$ — усредненная по сечению плотность потока атомарного водорода.

Из (П8) видно, что введенные выше величины Λ и $\tau_d^{(H)}$ действительно имеют смысл соответственно эффективной длины и эффективного времени диффузии атомарного водорода из ядра потока на стенки канала. При выполеннии условия $2\Lambda < V\tau_d$ уравнение типа (П8) приближенно описывает потери на стенках канала и других примесей, присутствующих в потоке.

Список литературы

- Bacal M., Hamilton G.W. // Phys. Rev. Lett. 1979. Vol. 42. N 23. P. 1538–1540.
- [2] Hiskes J.R. // J. Appl. Phys. 1980. Vol. 51. N 9. P. 4592-4594.
- Bacal M. // Nucl. Instr. Meth. Phys. Rev. 1989. Vol. B37/38.
 P. 28–32.
- [4] Skinner D.A., Bruneteau A.M., Berlemont P., Courteille C. et al. // Phys. Rev. E. 1993. Vol. 48. N 3. P. 2122–2132.
- [5] Bacal M., Skinner D.A. // Comments. At. Mol. Phys. 1990.
 Vol. 23. N 6. P. 283–299.
- [6] Wadehra J.M. // Phys. Rev. A. 1984. Vol. 29. N 1. P. 106-110.
- [7] Бакит Ф.Г., Иванов В.Г. // ЖТФ. 1992. Т. 62. Вып. 2. С. 195–200.
- [8] Бакит Ф.Г., Елизаров Л.И., Иванов В.Г. // Физика плазмы. 1990. Т. 16. N 7. С. 854–861.
- [9] Baksht F.G., Djuzhev G.A., Elizarov L.I. et al. // Plasma Sources, Sci., Technol. 1994. Vol. 3. N 2. P. 88–98.
- [10] Бакшт Ф.Г., Иванов В.Г. // Письма в ЖТФ. 1997. Т. 23. Вып. 9. С. 59–63.
- [11] Дэшман С. Научные основы вакуумной техники. М.: Мир, 1964. 714 с.
- [12] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
- [13] Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г., Юрьев В.Г. // Физика плазмы. 1988. Т. 14. № 1. С. 91–97.
- [14] *Бакшт Ф.Г., Иванов В.Г.* // Физика плазмы. 1986. Т. 12. № 3. С. 286–293.
- [15] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1996. Т. 66. Вып. 9. С. 58–63.
- [16] Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 711 с.
- [17] Бакшт Ф.Г., Дюжев Г.А., Марциновский А.М. и др. Термоэмиссионные преобразователи и низкотемпературная плазма. М.: Наука, 1973. 480 с.
- [18] Ионих Ю.З. // Опт. и спектр. 1981. Т. 51. № 1. С. 76-83.
- [19] Елецкий А.В., Палкина Л.А., Смирнов Б.М. Явления переноса в слабоионизованной плазме. М.: Атомиздат, 1975. 336 с.
- [20] Blyth G. et al. // J. Chem. Soc. Faraday Trans. I. 1987. Vol. 83.
 N 3. P. 751–757.
- [21] Madhavan P., Whitten J.L. // J. Chem. Phys. 1982. Vol. 77.
 N 5. P. 2673–2683.
- [22] Harris J., Anderson S. // Phys. Rev. Lett. 1985. Vol. 55. N 15.
 P. 1583–1586.
- [23] Cacciatore M., Billing G.D. // Surf. Sci. 1990. Vol. 232. N 1/2.
 P. 35–50.
- [24] Reitner C.T., Auerbach D.J., Michelsen H.A. // Phys. Rev. Lett. 1992. Vol. 68. N 8. P. 1164–1167.
- [25] Gorse C., Capitelli M., Bacal M. et al. // Chem. Phys. 1987. Vol. 117. P. 172–195.
- [26] Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г. и др., // Письма в ЖТФ. 1993. Т. 19. Вып. 22. С.39–43.
- [27] Бакшт Ф.Г., Иванов В.Г., Никитин А.Г., Школьник С.М. // Письма в ЖТФ. 1994. Т. 20. Вып. 22. С. 84–89.
- [28] Бакшт Ф.Г. // ЖТФ. 1982. Т. 52. Вып. 1. С. 3-9.