01;05;10;11;12 Пробеги тяжелых ионов низких энергий в бериллии, боре, углероде и кремнии

© Е.Г. Шейкин

Акционерное общество открытого типа "Научно-исследовательское предприятие гиперзвуковых систем", 196066 Санкт-Петербург, Россия

(Поступило в Редакцию 21 января 1997 г. В окончательной редакции 17 июня 1997 г.)

На основе разработанной теории прохождения тяжелых ионов низких энергий в веществе получены простые аналитические выражения для расчета средних значений проективных пробегов ионов и среднеквадратичных отклонений проективных пробегов. Проведено сравнение теоретических и экспериментальных пробегов тяжелых ионов с атомными номерами $29 \le Z_1 \le 83$ в мишенях из Ве, В, С и Si. Наблюдается хорошее согласие теории с экспериментом.

В работе [1] развита теория распространения тяжелых ионов низких энергий в аморфной среде в случае, когда основным процессом, определяющим перенос ионов является процесс их упругого рассеяния на атомах мишени. Процесс упругого рассеяния описывается в приближении модифицированной модели твердых шаров [2]. Сечение упругого рассеяния определяется через тормозную способность s_n для потенциала взаимодействия в модели Томаса-Ферми. Предполагается, что остановка иона в веществе происходит, когда его энергия становится меньше некоторой пороговой величины E_{th}. В этих приближениях в работе [1] получены аналитические выражения для расчета среднего значения проективного пробега ионов \bar{R}_p и среднеквадратичного отклонения проективных пробегов ΔR_p . В данной работе проводится сопоставление теоретических результатов полученных в [1] с экспериментом [3-6] и предлагаются простые выражения для расчетов \bar{R}_p и ΔR_p . Приведем формулы для расчета \bar{R}_p и ΔR_p из [1]

$$\bar{R}_p = \sum_{k=1}^{\infty} q_k \bar{x}_k, \quad \overline{R_p^2} = \sum_{k=1}^{\infty} q_k \overline{x_k^2},$$
$$\Delta R_p = \sqrt{\left(\overline{R_p^2} - \bar{R}_p^2\right)}, \tag{1}$$

где x_k — расстояние от поверхности твердого тела до точки, в которой ион испытывает *k*-е столкновение; q_k — вероятность того, что ион остановится после *k*-го столкновения;

$$q_{k} = \xi_{k} - \xi_{k-1},$$

$$\xi_{k} = 1 - Q^{k} \sum_{i=0}^{N} (-1)^{i} c_{k}^{i} \left[\alpha^{i} - \frac{E_{\text{th}}}{E} \sum_{j=0}^{k-1} \frac{1}{j!} \ln^{j} (\alpha^{i} E/E_{\text{th}}) \right], \ k > N,$$

$$\xi_{k} = 0, \qquad k \le N, \qquad (2)$$

где E — начальная энергия иона, N — целая часть числа $\ln(E/E_{\rm th})/\ln(\alpha)$, $\alpha = ((m_1 - m_2)/(m_1 + m_2))^2$, m_1 — масса иона, m_2 — масса атома мишени,

$$c_k^i = \frac{k!}{i!(k-i)!}, \quad Q = 1/(1-\alpha)$$

Средние значения \bar{x}_k и \bar{x}_k^2 , входящие в (1), определяются соотношениями

$$\bar{x}_k = \sum_{j=0}^{k-1} \overline{\lambda_j \mu_j}, \quad \overline{x_k^2} = \bar{x}_k^2 + \sum_{j=0}^{k-1} \left(\overline{\lambda_j^2 \mu_j^2} - \bar{\lambda}_j^2 \bar{\mu}_j^2 \right).$$
 (3)

Здесь λ_j — длина пробега иона между *j*- и *j* + 1-столкновениями, μ_j — косинус угла между направлением движения иона после *j*-го столкновения и нормалью к поверхности мишени. Средние значения $\bar{\mu}_j$ и $\overline{\mu_j^2}$ определяются соотношениями

$$\bar{\mu}_j = \mu_0(\overline{\cos\Theta})^j, \ \overline{\mu_j^2} = \frac{1}{3} + \left(\mu_0^2 - \frac{1}{3}\right) \left(\frac{3\overline{\cos^2\Theta} - 1}{2}\right)^j,$$

где θ — угол рассеяния иона в лабораторной системе при столкновении с атомом мишени, μ_0 — начальное значение μ , в дальнейшем будем полагать $\mu_0 = 1$.

В модифицированной модели твердых шаров средние значения $\cos \Theta$ и $\cos^2 \Theta$ определяются следующими соотношениями:

$$\overline{\cos\Theta} = \begin{cases} 1 - \frac{1}{3} (m_2/m_1)^2, & m_1 > m_2, \\ \frac{2}{3} (m_1/m_2), & m_1 \le m_2, \end{cases}$$
$$\overline{\cos^2\Theta} = 1 - \frac{1}{4} \left(1 + (m_2/m_1)^2 \right) \\ + \frac{1}{16} (m_1/m_2) \left(1 - (m_2/m_1)^2 \right)^2 \ln(1/\alpha). \quad (4)$$

При $m_1 > m_2$ для расчета $\overline{\cos^2 \Theta}$ удобно использовать разложение данного выражения в ряд <u>Тейлора</u>. В частности, при $m_1/m_2 \ge 2$ для расчета $\overline{\cos^2 \Theta}$ с относительной погрешностью, не превышающей 0.1%, получаем следующее выражение:

$$\overline{\cos^2 \Theta} pprox 1 - rac{2}{3} (m_2/m_1)^2 + rac{2}{15} (m_2/m_1)^4.$$

Выражения для средних значений $\overline{\lambda_j}$ и $\overline{\lambda_j^2}$, входящих в (3), получены в [1] с использованием аппроксимационного выражения для s_n из [7]

$$s_n = \frac{g\sqrt{\varepsilon}}{b+\varepsilon}$$
 при $g = 0.45, b = 0.3.$ (5)

Приведенная энергия ε определяется соотношением

$$\varepsilon = E \, \frac{m_2 a}{Z_1 Z_2 e^2 (m_1 + m_2)}$$

где Z_1 и Z_2 — соответственно заряд ядра иона и атома мишени, a — параметр экранирования, e — заряд электрона.

Используется приближение Линдхарда, в котором $a = 0.8853a_0/(Z_1^{2/3} + Z_2^{2/3})^{1/2}$, a_0 — боровский радиус. В этом случае, согласно [1],

$$\bar{\lambda}_{j} = \lambda_{0} \Big[b + \gamma^{j} (1/2) + \varepsilon \gamma^{j} (3/2) \Big],$$

$$\overline{\lambda_{j}^{2}} = 2\lambda_{0}^{2} \Big[b^{2} \gamma^{j} (1) + 2b\varepsilon \gamma^{j} (2) + \varepsilon^{2} \gamma^{j} (3) \Big], \qquad (6)$$

где $\gamma(w) = (1 - \alpha^{1+w})/((1 - \alpha)(1 + w)),$ $\lambda_0 = \sqrt{\varepsilon}/(2gn\pi a^2), n$ — концентрация атомов мишени.

Совокупность формул (1)–(6) позволяет рассчитать при заданной величине $E_{\rm th}$ зависимость пробегов ионов в веществе от их энергии E. Величину $E_{\rm th}$ определим аналогично [1] соотношением $E_{\rm th} = E_d/(1 - \alpha)$, полученным из условия равенства максимальной энергии, передаваемой атому мишени при столкновении, и энергии смещения E_d . Энергия смещения E_d для различных материалов мишени, согласно [8], изменяется в пределах от 10 до 35 eV.

Исследуем, насколько существен учет $E_{\rm th}$ при расчете пробегов тяжелых ионов с энергиями $\varepsilon \leq 0.1$ Рассмотрим предельный случай $E_{\rm th} = 0$. Для предельных значений пробегов ионов при $E_{\rm th} = 0$ введем специальные обозначения: L_p — предельное значение среднего проективного пробега, ΔL_p — предельное значение среднего проективного отклонения проективных пробегов. Согласно (2), при $E_{\rm th} = 0$ величина $q_k = 0$ для любого конечного значения числа k. Следовательно, согласно (1)–(3), для L_p и ΔL_p получаем следующие выражения:

$$L_p = \sum_{j=0}^{\infty} \overline{\lambda_j \mu_j}, \quad (\Delta L_p)^2 = \sum_{j=0}^{\infty} \left(\overline{\lambda_j^2 \mu_j^2} - \bar{\lambda}_j^2 \bar{\mu}_j^2 \right).$$
(7)

После несложных преобразований из формул (3)–(7) получаем

$$L_{p} = \lambda_{0} \left[\frac{b}{1 - \gamma(1/2)\overline{\cos\Theta}} + \frac{\varepsilon}{1 - \gamma(3/2)\overline{\cos\Theta}} \right],$$

$$(\Delta L_{p})^{2} = \lambda_{0}^{2} \left\{ \frac{2}{3} \left[\frac{b^{2}}{1 - \gamma(1)} + \frac{2b\varepsilon}{1 - \gamma(2)} + \frac{\varepsilon^{2}}{1 - \gamma(3)} \right] \right.$$

$$\left. + \frac{4}{3} \left[\frac{b^{2}}{1 - \tau\gamma(1)} + \frac{2b\varepsilon}{1 - \tau\gamma(2)} + \frac{\varepsilon^{2}}{1 - \tau\gamma(3)} \right] \right.$$

$$\left. - \left[\frac{b^{2}}{1 - (\gamma(1/2)\overline{\cos\Theta})^{2}} + \frac{2b\varepsilon}{1 - \gamma(1/2)\gamma(3/2)(\overline{\cos\Theta})^{2}} \right.$$

$$\left. + \frac{\varepsilon^{2}}{1 - (\gamma(3/2)\overline{\cos\Theta})^{2}} \right] \right\}, \qquad (8)$$

$$rge \ \tau = (3\overline{\cos^{2}\Theta})/2.$$

Рис. 1. Зависимость отношения \bar{R}_p/L_p от энергии ионов, при $E_d = 25 \text{ eV}$: сплошная кривая — Pb–C, штриховая — Cs–Si, пунктир — Pb–Si.

На рис. 1 представлены зависимости \bar{R}_p/L_p от энергии ионов для различных пар ион-мишень. При расчете \bar{R}_p для всех мишеней полагали $E_d = 25 \, \text{eV}$. Видно, что при больших значениях ε отношение \bar{R}_p/L_p близко к единице и падает с уменьшением энергии иона. При фиксированном значении ε отношение \bar{R}_p/L_p падает как с уменьшением Z_1 , так и с уменьшением Z_2 . При $\varepsilon < 0.05$ отличие R_p от L_p становится существенным. В этом диапазоне энергий необходим корректный учет пороговой энергии $\varepsilon_{\rm th}$ при расчете проективных пробегов ионов в веществе. Сравнительные расчеты зависимостей $\bar{R}_p(\varepsilon)$ и $L_p(\varepsilon)$, а также $\Delta R_p(\varepsilon)$ и $\Delta L_p(\varepsilon)$ были проведены для большого набора комбинаций ион-мишень, удовлетворяющих условию $m_1/m_2 \ge 2$. На основе этих расчетов получены следующие аппроксимированные выражения для расчета проективных пробегов ионов в веществе:

$$\bar{R}_{p}(\varepsilon) \approx L_{p}(\varepsilon) - \left(\frac{m_{1}}{m_{1}+m_{2}}\right)^{0.8} L_{p}(\varepsilon_{\text{th}}),$$
$$\Delta R_{p}(\varepsilon) \approx \Delta L_{p}(\varepsilon). \tag{9}$$

Относительная погрешность при расчете по формулам (9) в диапазоне энергий 0.005 $\leq \varepsilon \leq 0.1$ для \bar{R}_p не превышает 0.3%, а для $\Delta R_p - 1$ %. Таким образом, использование формул (8)–(10) позволяет просто и с высокой точностью рассчитывать значения проективных пробегов ионов в веществе.

При малых значениях параметра m_2/m_1 выражения для расчета предельных значений пробегов ионов L_p и ΔL_p , входящих в (9), могут быть существенно упрощены. Используя разложение в ряд Тейлора функций L_p и ΔL_p , определяемых формулами (8), и ограничиваясь

Рис. 2. Зависимость отношения приближенных значений пробегов ионов к точным от атомного номера иона Z_1 : $\varepsilon = 0.01$; $\blacksquare - \tilde{R}_p / \bar{R}_p$; • — $\Delta \tilde{R}_p / \Delta R_p$.

первыми членами разложения, получаем приближенные выражения для предельных пробегов ионов

$$\begin{split} \tilde{L}_{p} &= \lambda_{0} \left(1 + \frac{m_{1}}{m_{2}} \right) \left(b + \varepsilon \left(\frac{1}{3} + 0.52 \frac{m_{2}}{m_{1}} \right) \right), \\ (\Delta \tilde{L}_{p})^{2} &= 0.5 \frac{m_{1}}{m_{2}} \left(1 + \frac{m_{2}}{m_{1}} \right)^{2} \\ &\times \left[b^{2} \left(1 - \frac{1}{6} \frac{m_{2}}{m_{1}} \right) + b\varepsilon \left(1 + \frac{5}{4} \frac{m_{2}}{m_{1}} \right) \right. \\ &+ \varepsilon^{2} \left(\frac{1}{3} - \frac{1}{2} \frac{m_{2}}{m_{1}} \right) \right]. \end{split}$$
(10)

Для констатации приближенного характера полученных соотношений используется волнистая линия сверху над обозначением соответствующих величин. При $m_1/m_2 \ge 2$, $\varepsilon \le 0.1$ относительные отклонения приближенных значений \tilde{L}_p от точных L_p не превышает 2%, а $\Delta \tilde{L}_p$ от $\Delta L_p - 3.5\%$. Эти отклонения меньше обычных погрешностей экспериментального определения пробегов ионов в веществе. Поэтому представляется целесообразным на основе формул (9), (10) ввести следующие приближенные выражения для расчета пробегов ионов:

$$\tilde{R}_{p}(\varepsilon) = \tilde{L}_{p}(\varepsilon) - \left(\frac{m_{1}}{m_{1} + m_{2}}\right)^{0.8} \tilde{L}_{p}(\varepsilon_{\text{th}}),$$
$$\Delta \tilde{R}_{p}(\varepsilon) = \Delta \tilde{L}_{p}(\varepsilon).$$
(11)

На рис. 2 проводится сопоставление точных значений пробегов ионов в углероде, рассчитываемых по формулам (1)–(6), и приближенных, рассчитываемых по (10), (11). Сравнение проводится в широком диапазоне изменения Z_1 от 12 (магний) до 83 (висмут). Из рис. 2 видно, что погрешность приближенного расчета пробегов ионов по формуле (11) невелика и быстро падает с ростом Z_1 . При значениях $Z_1 > 20$, отвечающих значениям $m_2/m_1 < 0.3$, отклонения приближенных

пробегов \tilde{R}_p и $\Delta \tilde{R}_p$ от точных соответственно \bar{R}_p и ΔR_p не превышает 1%. Это позволяет получить из (10), (11) надежную оценку для отношения $\Delta R_p/\bar{R}_p$. Предполагая параметры m_2/m_1 и ε малыми (с ограничивающим условием $\varepsilon_{\rm th} \ll \varepsilon \le 0.1$), разложим в ряд Тейлора отношение функций $\Delta \tilde{R}_p$ и \tilde{R}_p . Ограничившись членами первого порядка малости, получим

$$\Delta R_p / \bar{R}_p \approx \frac{\left(1 + (\varepsilon/b - m_2/m_1)/6\right)}{1 - \sqrt{\varepsilon_{\rm th}/\varepsilon}} \sqrt{\frac{m_2}{2m_1}}.$$
 (12)

При $m_2/m_1 < 0.3$ выражение (12) с высокой точностью определяет отношение $\Delta R_p/\bar{R}_p$. В частности, при $\varepsilon = 0.1$ для пары Са–С результат точного расчета по формулам (1)–(6) дает значение $\Delta R_p/\bar{R}_p = 0.427$, а приближенного по формуле (12) — $\Delta R_p/\bar{R}_p = 0.424$. Для пары Рb–С результаты точного и приближенного расчетов совпадают в третьем знаке $\Delta R_p/\bar{R}_p = 0.184$.

Проведем сопоставление результатов эксперимента [3-6] с результатами расчетов. Чтобы не вносить дополнительный элемент неопределенности, для сравнения используем результаты точных расчетов по формулам (1)–(6). На рис. 3 приведены зависимости пробегов ионов от энергии для четырех различных комбинаций ион-мишень. Как видно из рисунка, экспериментальные результаты хорошо согласуются с теоретическими. Выборочное сопоставление экспериментальных результатов с теоретическими для 19 комбинаций ион-мишень при различных энергиях ионов проводится в табл. 1. Анализ приведенных результатов показывает, что для мишеней из Ве, В и С наблюдается в целом хорошее согласие экспериментальных и теоретических значений R_p и ΔR_p . Для мишеней из Si теоретические значения \bar{R}_p и ΔR_p , как правило, выше экспериментальных.

Рис. 3. Зависимость пробегов ионов \bar{R}_p — от энергии: сплошные линии — расчет по формулам (1)–(6), ▲ — Pb–Be, • — Au–B, ■ — Eu–C, ▼ — Pd–Si.

Проведем статистическую обработку результатов сравнения теоретических значений пробегов ионов в рассматриваемых мишенях с представленными в работах [3–6] экспериментальными значениями пробегов для ионов с атомными номерами от $Z_1 = 29$ до 83 и энергиями $\varepsilon \leq 0.1$. Рассмотрим безразмерные величины δ_1 , δ_2 , введенные следующим образом: $\delta_1(\varepsilon_i)$ — отно-

Таблица 1. Параметры экспериментальных и теоретических пробегов ионов

				Эксперимент		Теория	
Ион	Мишень	E, keV	ε	$\bar{R}_p, Å$	$\Delta R_p, \text{\AA}$	$\bar{R}_p, Å$	$\Delta R_p, \text{\AA}$
Bi	Be	20	0.0174	280	_	251	41
		50	0.0436	450	_	424	67
		100	0.0872	650	_	640	102
	В	20	0.0165	180	30	202	35
		50	0.0411	285	60	339	59
		100	0.0823	440	90	511	89
	Si	20	0.0133	160	50	230	62
		50	0.0333	270	75	379	101
		100	0.0666	425	115	562	152
Pb	Be	20	0.0179	280	_	251	41
		50	0.0446	450	_	423	67
		100	0.0893	630	_	640	102
	В	20	0.0169	175	30	202	36
		50	0.0421	310	70	339	59
		100	0.0843	450	100	510	89
	С	20	0.0154	205	44	203	38
		50	0.0384	315	60	340	62
		100	0.0769	495	91	510	93
Au	В	20	0.0186	200	50	198	36
		50	0.0464	330	70	334	59
		100	0.0928	470	90	504	91
	С	20	0.0169	197	25	200	38
		50	0.0423	315	47	335	62
		100	0.0846	460	80	504	95
	Si	20	0.0149	250	54	226	62
		50	0.0373	375	84	373	103
		100	0.0746	484	130	557	156
Yb	В	20	0.0245	180	40	190	37
		50	0.0612	310	60	323	62
	С	20	0.0223	176	35	192	39
		50	0.0558	295	59	324	65
	Si	20	0.0194	200	43	219	64
		50	0.0486	310	84	365	108
		100	0.0972	468	126	552	167
Eu	Be	20	0.0337	220	—	227	43
		50	0.0842	365	—	392	74
	С	50	0.0720	302	64	315	68
	Si	20	0.0247	194	29	212	67
		50	0.0618	318	68	357	113
Cs	Be	20	0.0455	200	—	220	44
	В	20	0.0427	165	45	177	39
	С	20	0.0387	170	43	179	41
		50	0.0968	290	69	310	72
	Si	20	0.0327	137	50	207	70
	Si	50	0.0819	270	84	354	121

Таблица 2. Результаты статистической обработки данных сравнения экспериментальных и теоретических значений пробегов ионов в веществе

Мишень	$ar{\delta}_1$	σ_1	$ar{\delta}_2$	σ_2
Be	1.02	0.075	-	-
В	0.92	0.053	1.07	0.16
С	0.93	0.066	0.93	0.18
Si	0.88	0.12	0.72	0.12

шение эспериментальных значений \bar{R}_p к теоретическим, $\delta_2(\varepsilon_i)$ — отношение экспериментальных значений ΔR_p к теоретическим, где ε_i — соответствующие значения энергии ионов.

В табл. 2 приведены результаты статистической обработки полученных данных $\delta_1(\varepsilon_i)$ и $\delta_2(\varepsilon_i)$ для различных мишеней. Математические ожидания $\overline{\delta}_1$ и $\overline{\delta}_2$ являются усредненными по ε_i и Z₁ значениями соответствующих наборов величин $\delta_1(\varepsilon_i)$ и $\delta_2(\varepsilon_i)$. Величины σ_1 и σ_2 среднеквадратичные отклонения для соответствующих значений δ_1 и δ_2 . Из табл. 2 следует, что в среднем экспериментальные и теоретические результаты находятся в хорошем соответствии. Незначительные отличия величин $\bar{\delta}_1$ и $\bar{\delta}_2$ от единицы для В и С и чуть бо́льшие для Si могут быть вызваны как погрешностями экспериментального измерения пробегов, так и приближенностью разработанного теоретического подхода. Систематический характер отклонения теоретических и экспериментальных значений пробегов ионов в Si, возможно, обусловлен влиянием процесса неупругого торможения, не учитываемого в данной работе. Приведенные в табл. 2 значения $\bar{\delta}_1$ и $\bar{\delta}_2$ могут быть использованы для корректировки теоретических значений пробегов ионов в мишенях из Be, B, C и Si.

Список литературы

- [1] Шейкин Е.Г. // ЖТФ. 1997. Т. 67. Вып. 10. С. 16-20.
- [2] Шейкин Е.Г. // ЖТФ. 1996. Т. 66. Вып. 10. С. 63.
- [3] Behar M., Fichtner P.F., Oliveri C.A. et al. // Nucl. Instr. and Meth. 1985. Vol. B6. N 3. P. 453–458.
- [4] Fichtner P.F., Behar M., Oliveri C.A. et al. // Nucl. Instr. and Meth. 1987. Vol. B28. N 4. P. 481–487.
- [5] Grande M., Behar M., Biersack J.P., Zawislak F.C. // Nucl. Instr. and Meth. 1990. Vol. B45. N 1–4. P. 689–692.
- [6] Grande M., Zawislak F.C., Fink D., Behar M. // Nucl. Instr. and Meth. 1990. Vol. B61. N 3. P. 282–290.
- [7] Юдин В.В. // ДАН СССР. 1972. Т. 207. № 2. С. 325-332.
- [8] Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 320 с.