# 01;05 Устойчивость нормальной фазы в ограниченной сверхпроводящей пленке с током

## © А.С. Рудый

Ярославский государственный университет, 150000 Ярославль, Россия

(Поступило в Редакцию 30 июля 1996 г. В окончательной редакции 27 июня 1997 г.)

Рассмотрены двухфазные состояния равновесия тонкой сверхпроводящей пленки с током при конвективном теплообмене на свободной поверхности и исследована их устойчивость по первому приближению. Показано, что из двух состояний равновесия устойчиво состояние с большей протяженностью области нормальной фазы. В предельном случае бесконечно длинной пленки устойчивое двухфазное состояние равновесия стремится к пространственно однородному нормальному состоянию, а неустойчивое остается локализованным. В определенном диапазоне значений параметров системы время релаксации такого образования может быть достаточно велико и его следует рассматривать как квазиустойчивое состояние равновесия.

#### Введение

Одной из проблем, связанных с разработкой и эксплуатацией криоэлектронных устройств, является тепловое разрушение сверхпроводящего состояния, сопровождающееся образованием в сверхпроводнике области нормальной фазы. В работе [1] подобные неоднородные состояния равновесия рассматривались применительно к одномерным и планарным структурам как наиболее распространенным элементам криоэлектроники. В частности, в [1], где исследовалась идеализированная модель тонкой сверхпроводящей пленки с переменным током, находящейся в охлаждающей среде, было показано следующее. При значениях параметра Стекли  $\sigma$ , превышающих его критическое значение  $\sigma_c$ , наряду с однородным сверхпроводящим состоянием существуют неоднородные состояния равновесия, в которых центральная часть пленки находится в нормальной фазе. В силу так называемой внешней нелинейности системы (разрывность параметров и плотности источников на фазовой границе) при  $\sigma > \sigma_c$  имеются два таких неоднородных двухфронтовых состояния равновесия.

В ситуации, когда неоднородное состояние какоголибо элемента криоэлектронного устройства является необходимым условием его работы, как например в болометре В. Франца [2], возникает проблема устойчивости локализованной нормальной фазы, которая в [1] не исследовалась. Настоящая работа посвящена анализу устойчивости полученных в [1] стационарных решений к симметричным возмущениям температурного поля и исследованию асимптотики обоих состояний равновесия.

#### Динамическая модель системы

Рассмотрим показанную на рис. 1 тонкую сверхпроводящую пленку с переменным током, центральная часть которой находится в нормальном состоянии. Пусть пленка помещена в термостат наполненный жидкостью или газом и вся система, за исключением пленки, имеет температуру ниже критической и находится в тепловом равновесии. Исследуем случай, когда неоднородное температурное поле пленки одномерно. Введем следующие обозначения для отклонения температуры сверхпроводящей пленки от температуры термостата  $T_s(x,t)$  отклонение температуры в сверхпроводящей области;  $T_n(x,t)$  — в области нормальной фазы. Очевидно, что стационарное распределение температуры симметрично относительно плоскости, проходящей через середину пленки  $x = \delta$ . Пусть в начальный момент времени система отклонена от состояния равновесия так, что распределение температуры по-прежнему остается симметричным. В этом случае краевая задача для



**Рис. 1.** Сверхпроводящая пленка в цепи источника переменного тока при конвективном теплообмене на свободной поверхности. Показано отклонение температуры пленки в двухфазном состоянии от температуры термостата. На вставке — смещение фазовой границы при возмущении температурного поля.

определения температурного поля сверхпроводящей S и нормальной N фазы имеет вид

$$c_{Vs}\dot{T}_{s} = \lambda_{s}T_{s}^{\prime\prime} - 2\frac{\alpha}{h}T_{s},$$

$$c_{Vn}\dot{T}_{n} = \lambda_{n}T_{n}^{\prime\prime} + \rho_{0}(1+\beta T_{n})\overline{j^{2}} - 2\frac{\alpha}{h}T_{n},$$

$$T_{s}(0,t) = 0, \quad T_{n}^{\prime}(x,t)\big|_{x=\delta} = 0,$$

$$T_{s}[x_{b}(t),t] = T_{n}[x_{b}(t),t] = T_{c},$$

$$\lambda_{s}T_{s}^{\prime}(x,t)\big|_{x=x_{b}(t)} = \lambda_{n}T_{n}^{\prime}(x,t)\big|_{x=x_{b}(t)}.$$
(1)

Здесь  $c_{Vs}, c_{Vn}, \lambda_s, \lambda_n$  — объемные теплоемкости и теплопроводности сверхпроводящей и нормальной фазоответственно;  $\rho_0$  — сопротивление нормальной фазы;  $\beta$  — температурный коэффициент сопротивления;  $j^2$  — среднее за период значение квадрата плотности тока;  $\alpha$  — коэффициент теплоотдачи; h — толщина пленки;  $x_b$  — координата фазовой границы;  $T_c$  — критическая температура. Последние слагаемые в правых частях уравнений (1) учитывают тепловые потери за счет конвективного теплообмена на поверхности. При этом ввиду малости h считаем, что тепловое сопротивление и температурный градиент в направлении нормали к поверхности отсутствуют.

Переходя к нормированным переменным  $\Theta = T/T_c$ ,  $\xi = x/\delta$ , приведем задачу (1) к безразмерному виду

$$\begin{split} \frac{\delta^2}{a_s} \dot{\Theta}_s(\xi, t) &= \Theta_s''(\xi, t) - 2 \operatorname{Bi}_s \Theta_s(\xi, t), \\ \frac{\delta^2}{a_n} \dot{\Theta}_n(\xi, t) &= \Theta_n''(\xi, t) - \kappa \Theta_n(\xi, t) + K, \\ \Theta_s(0, t) &= 0, \quad \Theta_n'(\xi, t) \big|_{\xi=1} = 0, \\ \Theta_s[\xi_b(t), t] &= \Theta_n[\xi_b(t), t] = 1, \\ \lambda_s \Theta_s'[\xi, t] \big|_{\xi=\xi_b(t)} &= \lambda_n \Theta_n'[\xi, t] \big|_{\xi=\xi_b(t)}. \end{split}$$

Здесь Ві =  $\alpha \delta^2/h\lambda$  — произведение собственного критерия Био  $\alpha \delta/\lambda$  на критерий подобия параметрического вида  $\delta/h$ , а  $\kappa = 2\text{Bi}_n - \beta \rho_0 \overline{j^2} \delta^2/\lambda_n$  и  $K = \rho_0 \overline{j^2} \delta^2/\lambda_n T_c$  вспомогательные параметры. Решение задачи (2) ищем в виде суммы стационарного и нестационарного решений

$$\Theta(\xi,t) = \bar{\Theta}(\xi) + u(\xi,t), \quad \xi_b(t) = \bar{\xi}_b + \xi_b(t), \quad (3)$$

где  $u(\xi, t)$  — малое

$$u(\bar{\xi}_b, t)/\bar{\Theta}(\bar{\xi}_b) \ll 1, \tag{4}$$

симметричное возмущение состояния равновесия. Нетрудно показать (рис. 1), что для подобного возмущения температурного поля смещение координаты фазовой границы  $\xi_b(t)$  будет также малó. Тогда условия непрерывности задачи (2), предварительно записанные как

$$\begin{split} \bar{\Theta}_{s}[\bar{\xi}_{b}+\xi_{b}(t)] + u_{s}[\bar{\xi}_{b}+\xi_{b}(t),t] \\ &= \bar{\Theta}_{n}[\bar{\xi}_{b}+\xi_{b}(t)] + u_{s}[\bar{\xi}_{b}+\xi_{b}(t),t] = 1, \end{split}$$

$$\lambda_{s} \{ \bar{\Theta}'_{s}[\bar{\xi}_{b} + \xi(t)] + u'_{s}[\bar{\xi}_{b} + \xi(t), t] \}$$
  
=  $\lambda_{n} \{ \bar{\Theta}'_{n}[\bar{\xi}_{b} + \xi(t)] + u'_{s}[\bar{\xi}_{b} + \xi(t), t] \},$  (5)

можно разложить в ряд Тейлора в окрестности точки  $\bar{\xi}_b$  по переменной  $\xi_b(t)$  [3]. Отбросив нелинейные относительно возмущений члены, получим линейное приближение условий непрерывности

$$\begin{split} \bar{\Theta}_{s}(\bar{\xi}_{b}) &+ \bar{\Theta}_{s}'(\bar{\xi}_{b})\xi_{b}(t) + u_{s}(\bar{\xi}_{b}, t) \\ &= \bar{\Theta}_{n}(\bar{\xi}_{b}) + \bar{\Theta}_{n}'(\bar{\xi}_{b})\xi_{b}(t) + u_{n}(\bar{\xi}_{b}, t) = 1, \\ \lambda_{s}[\bar{\Theta}_{s}'(\bar{\xi}_{b}) + \bar{\Theta}_{s}''(\bar{\xi}_{b})\xi_{b}(t) + u_{s}'(\bar{\xi}_{b}, t)] \\ &= \lambda_{n}[\bar{\Theta}_{n}'(\bar{\xi}_{b}) + \bar{\Theta}_{n}''(\bar{\xi}_{b})\xi_{b}(t)u_{n}'(\bar{\xi}_{b}, t)]. \end{split}$$
(6)

Разделяя стационарные и нестационарные составляющие в задаче (2), с учетом (6) имеем

$$\begin{split} \bar{\Theta}_{s}^{\prime\prime}(\xi) &= -2\mathrm{Bi}_{s}\bar{\Theta}_{s}(\xi) = 0, \quad \bar{\Theta}_{n}^{\prime\prime}(\xi) - \kappa\bar{\Theta}_{n}(\xi) + K = 0, \\ \bar{\Theta}_{s}(0) &= 0, \quad \bar{\Theta}_{n}^{\prime}(\xi)\big|_{\xi=1} = 0, \\ \bar{\Theta}_{s}(\bar{\xi}_{b}) &= \bar{\Theta}_{n}(\bar{\xi}_{b}) = 1, \ \lambda_{s}\bar{\Theta}_{s}^{\prime}(\xi)\big|_{\xi=\bar{\xi}_{b}} = \lambda_{n}\bar{\Theta}_{n}^{\prime}(\xi)\big|_{\xi=\bar{\xi}_{b}}; \quad (7) \\ \frac{\delta^{2}}{a_{s}}\dot{u}_{s}(\xi,t) &= u_{s}^{\prime\prime}(\xi,t) - 2\mathrm{Bi}_{s}u_{s}(\xi,t), \\ \frac{\delta^{2}}{a_{n}}\dot{u}_{n}(\xi,t) &= u_{n}^{\prime\prime}(\xi,t) - \kappa u_{n}(\xi,t), \\ u_{s}(0,t) &= 0, \quad u_{n}^{\prime}(\xi,t)\big|_{\xi=1} = 0, \\ u_{s}(\bar{\xi}_{b},t) + \bar{\Theta}_{s}^{\prime}(\bar{\xi}_{b})\xi_{b}(t) \\ &= u_{n}(\bar{\xi}_{b},t) + \bar{\Theta}_{s}^{\prime\prime}(\bar{\xi}_{b})\xi_{b}(t) = 0, \\ \lambda_{s}[u_{s}^{\prime}(\bar{\xi}_{b},t) + \bar{\Theta}_{s}^{\prime\prime}(\bar{\xi}_{b})\xi_{b}(t)] \\ &= \lambda_{n}[u_{n}^{\prime}(\bar{\xi}_{b},t) + \bar{\Theta}_{n}^{\prime\prime}(\bar{\xi}_{b})\xi_{b}(t)]. \end{split}$$

Стационарная задача (7) рассматривалась в работе [1], где было показано, что при значениях параметра  $\sigma = K/\kappa$ , меньших критического  $\sigma_c$ , система имеет только однородное решение  $\bar{\Theta}(\xi) = 0$ , соответствующее сверхпроводящему состоянию пленки. При  $\sigma \gg \sigma_c$  у задачи (7) появляются неоднородные решения вида

$$\bar{\Theta}_{s}(\xi) = \frac{\operatorname{sh}\sqrt{2\operatorname{Bi}_{s}\xi}}{\operatorname{sh}\sqrt{2\operatorname{Bi}_{s}\xi_{b}^{(m)}}}; \quad \xi < \bar{\xi}_{b}^{(m)},$$
$$\bar{\Theta}_{n}(\xi) = \sigma + (1-\sigma)\frac{\operatorname{ch}\sqrt{\kappa}(1-\xi)}{\operatorname{ch}\sqrt{\kappa}(1-\bar{\xi}_{b}^{(m)})}; \quad \xi > \bar{\xi}_{b}^{(m)}, \quad (9)$$

где комплекс  $\sigma = K/\kappa$  имеет тот же смысл, что и параметр Стекли $^1 \sigma_0 = \overline{j^2} \rho_o h/2 \alpha T_c$  для классического

<sup>&</sup>lt;sup>1</sup> Параметром Стекли называется безразмерная величина  $\sigma_0$ , которая служит мерой отношения характерной мощности тепловыделения  $j^2 \rho_0 dV$  к теплоотводу  $\alpha(T_c - T_0) dS$  в сверхпроводниках с транспортным током. В частности, для тонких пленок на основе классических сверхпроводников  $\sigma_0 = j^2 \rho_0 h/2\alpha(T_c - T_0)$ . Для материалов с большим температурным коэффициентом сопротивления роль параметра Стекли, как показано в [1], выполняет комплекс  $\sigma = K/\kappa$ .

сверхпроводника, с которым он связан соотношением  $\sigma = \sigma_0/(1 - \beta T_c \sigma_0).$ 

Координата фазовой границы  $\bar{\xi}_0^{(m)}$  определяется как корень уравнения

$$\operatorname{cth} \sqrt{2\mathrm{Bi}_n \frac{\sigma_0}{\sigma}} (1 - \bar{\xi}_b) \operatorname{cth} \sqrt{2\mathrm{Bi}_s} \bar{\xi}_b = (\sigma - 1) \sqrt{\frac{\lambda_n}{\lambda_s} \frac{\sigma_0}{\sigma}}.$$
 (10)

Для планарных структур на основе классических сверхпроводников число состояний равновесия *m* в закритической области ( $\sigma > \sigma_c$ ) равно двум. Для высокотемпературных сверхпроводников, согласно [1], возможно более двух стационарных состояний. Следует уточнить, что речь идет о многофронтовых двухфазных состояниях, анализ которых требует соответствующей постановки краевой задачи.

## Исследование устойчивости неоднородных стационарных состояний

Для определения устойчивости двухфазных состояний по первому приближению ищем решения задачи (8). Два последних граничных условия этой задачи задают непрерывность нестационарных компонент температуры и теплового потока на фазовой границе. Рассмотрим эти условия более подробно.

Подстановка искомого решения в виде  $u(\xi, t) = V(\xi) \exp(\nu t)$  в условие непрерывности температуры приводит к следующему закону движения фазовой границы

$$\xi_b(t) = -\frac{V_s(\xi_b)}{\bar{\Theta}'_s(\bar{\xi}_b)} \exp(\nu t),$$
  

$$\xi_b(t) = -\frac{V_n(\bar{\xi}_b)}{\bar{\Theta}'_n(\bar{\xi}_b)} \exp(\nu t).$$
(11)

Исключая  $\xi_b(t)$  из (11) и принимая во внимание, что

$$\frac{\bar{\Theta}'_s(\bar{\xi}_b)}{\bar{\Theta}'_n(\bar{\xi}_b)} = \frac{\lambda_n}{\lambda_s},\tag{12}$$

преобразуем первое из условий непрерывности в более простое

$$\frac{V_s(\xi_b)}{V_n(\bar{\xi}_b)} = \frac{\lambda_n}{\lambda_s}.$$
(13)

Условие непрерывности теплового потока с учетом (11) запишем как

$$\left[\frac{V_s'(\xi)}{V_s(\xi)} = \frac{\bar{\Theta}_s''(\xi)}{\bar{\Theta}_s'(\xi)}\right]_{\xi = \tilde{\xi}_b} = \left[\frac{V_n'(\xi)}{V_n(\xi)} - \frac{\bar{\Theta}_n''(\xi)}{\bar{\Theta}_n'(\xi)}\right]_{\xi - \tilde{\xi}_b}.$$
 (14)

Разделяя переменные в (8) и заменяя условия непрерывности на (13), (14) приходим к задаче Штурма– Лиувилля

$$V_{s}''(\xi) = \mu_{s}^{2}V_{s}(\xi), \quad V_{n}''(\xi) = \mu_{n}^{2}V_{n}(\xi),$$

 $V_{s}(0) = 0; \quad V'(\xi)\big|_{\xi=1} = 0, \quad \frac{V_{s}(\bar{\xi}_{b})}{V_{n}(\bar{\xi}_{b})} = \frac{\lambda_{n}}{\lambda_{s}},$  $\left[\frac{V_{s}'(\xi)}{V_{s}(\xi)} = \frac{\bar{\Theta}_{s}''(\xi)}{\bar{\Theta}_{s}'(\xi)}\right]_{\xi=\bar{\xi}_{b}} = \left[\frac{V_{n}'(\xi)}{V_{n}(\xi)} - \frac{\bar{\Theta}_{n}''(\xi)}{\bar{\Theta}_{n}'(\xi)}\right]_{\xi=\bar{\xi}_{b}}, \quad (15)$ 

где

$$\mu_s^2 = rac{\delta^2}{a_s} 
u + 2 \mathrm{Bi}, \quad \mu_n^2 = rac{\delta^2}{a_n} 
u + \kappa.$$

Ее решения, удовлетворяющие первым трем граничным условиям, имеют вид

$$V_s(\xi) = C \operatorname{sh} \mu_s \xi, \qquad (16)$$

$$V_n(\xi) = C \frac{\lambda_s}{\lambda_n} \frac{\operatorname{sh} \mu_s \xi_b}{\operatorname{ch} \mu_n (1 - \bar{\xi}_b)} \operatorname{ch} \mu_n (1 - \xi), \qquad (17)$$

где *С* — константа.

Подставив (9), (16) и (17) в последнее граничное условие, получим уравнение на собственные числа операторов (15)

$$\mu_{s} \operatorname{cth} \mu_{s} \bar{\xi}_{b} + \mu_{n} \operatorname{th} \mu_{n} (1 - \bar{\xi}_{b})$$
$$= \sqrt{2\mathrm{Bi}_{s}} \operatorname{th} \sqrt{2\mathrm{Bi}_{s}} \bar{\xi}_{b} + \sqrt{\kappa} \operatorname{cth} \sqrt{\kappa} (1 - \bar{\xi}_{b}).$$
(18)

Таким образом, для определения устойчивости стационарных решений (9) необходимо найти корни характеристического уравнения (18) для соответствующих значений параметра  $\bar{\xi}_b$ .

## Дальнейшая идеализация математической модели

Анализ уравнения (18) в его общем виде представляет достаточно сложную задачу, поэтому ограничимся исследованием двухфазного состояния сверхпроводника с низким температурным коэффициентом сопротивления в малой окрестности точки перехода. Очевидно, что в этом случае теплопроводности сверхпроводящей и нормальной фаз, а также критерии Био можно полагать равными  $\lambda_s = \lambda_n$ ,  $\text{Bi}_s = \text{Bi}_n \equiv \text{Bi}$ . Ввиду малости  $\rho_0\beta$ допустимо принять  $\kappa = 2\text{Bi}$  и положить  $\mu_n = \mu_s \equiv \mu$ , тем самым значительно упростив уравнение (18),

$$\mu[\operatorname{cth} \mu \bar{\xi}_b + \operatorname{th} \mu (1 - \bar{\xi}_b)] = A, \qquad (19)$$

где

$$A = \sqrt{2\mathrm{Bi}} \left( \mathrm{th} \sqrt{2\mathrm{Bi}} \bar{\xi}_b + \mathrm{cth} \sqrt{2\mathrm{Bi}} (1 - \bar{\xi}_b) \right).$$
(20)

Теперь доказательство устойчивости стационарных решений сводится к вычислению  $\mu$  для заданных  $\bar{\xi}_b$  и Ві и определению знака параметра

$$\nu = \frac{a}{\delta^2} (\mu^2 - 2\mathrm{Bi}). \tag{21}$$

Левая часть уравнения (20) является функцией комплексного переменного  $\mu = \mu' + i\mu''$ , в то время как

Журнал технической физики, 1998, том 68, № 6

α 4.0 Ъ 4.6 3.0 Bi=0. 4.4 2.0  $\mu_{3}^{"}$ 4.2 Bi 1.0 4.0 0 0.8 0.2 0.6  $\tilde{\xi}_{b}$ 3.8 0.2 0.6 0.8 0.4 ᢆ᠍ᡏ

**Рис. 2.** Зависимость корней характеристического уравнения от координаты фазовой границы. *а* — сплошная линия в верхней полуплоскости соответствует положению первого корня уравнения (23) на мнимой числовой оси, пунктирная — на вещественной оси. Критерий Био: *I* — 2, *2* — 1, *3* — 0.1; *b* — второй корень уравнения (23).

правая часть уравнения — неявная функция управляющего параметра  $A = A[\bar{\xi}_b(\sigma)]$  от  $\mu$  не зависит. Разделив в (20) действительную и мнимую части и исключив из полученных выражений A, приходим к уравнению

$$\frac{\mu'' \operatorname{ch} \mu' \cos \mu'' + \mu' \operatorname{sh} \mu' \sin \mu''}{\mu' \operatorname{ch} \mu' \cos \mu'' - \mu'' \operatorname{sh} \mu' \sin \mu''} = \frac{\operatorname{ch} \mu' \sin \mu'' + \operatorname{ch} \mu' (2\bar{\xi}_b - 1) \sin \mu'' (2\bar{\xi}_b - 1)}{\operatorname{sh} \mu' \cos \mu'' + \operatorname{sh} \mu' (2\bar{\xi}_b - 1) \cos \mu'' (2\bar{\xi}_b - 1)}.$$
 (22)

Результаты численного поиска корней уравнения (22) свидетельствуют, что комплексных корней уравнение не имеет, а все точки спектра лежат или на вещественной, или на мнимой оси. Поочередно полагая в (21)  $\mu = i\mu''$  и  $\mu = \mu'$ , приходим к следующим уравнениям:

$$\frac{2\mu''\cos\mu''}{\sin\mu'' + \sin(2\bar{\xi}_b - 1)\mu''} = \sqrt{2\mathrm{Bi}}\left(\operatorname{th}\sqrt{2\mathrm{Bi}}\bar{\xi}_b + \operatorname{cth}\sqrt{2\mathrm{Bi}}(1 - \bar{\xi}_b)\right),$$

$$\frac{2\mu'\operatorname{ch}\mu''}{\operatorname{sh}\mu' + \operatorname{sh}(2\bar{\xi}_b - 1)\mu'}$$

$$= \sqrt{2\mathrm{Bi}}\left(\operatorname{th}\sqrt{2\mathrm{Bi}}\bar{\xi}_b + \operatorname{cth}\sqrt{2\mathrm{Bi}}(1 - \bar{\xi}_b)\right).$$
(23)

Первое из уравнений (23) имеет бесконечное число корней  $\mu_k''$ , два из которых показаны на рис. 2, *a*, *b*. На рис. 2, *a* видно, что с ростом  $\bar{\xi}_b$  первая пара комплексно сопряженных корней  $\pm i\mu_1''$  стремится к нулю. При определенном значении параметра Стекли, когда  $\bar{\xi}_b = \xi_c$ , где  $\xi_c$  — корень уравнения

$$\sqrt{2\mathrm{Bi}}\bar{\xi}_b[\mathrm{th}\,\sqrt{2\mathrm{Bi}}\bar{\xi}_b + \mathrm{cth}\,\sqrt{2\mathrm{Bi}}(1-\bar{\xi}_b)] = 1,\qquad(24)$$

первая пара корней переходит на вещественную числовую ось. При этом отрицательный корень переходит на положительную полуось и наоборот. Таким образом, появляется единственная пара корней у второго из уравнений (23).

Устойчивость состояний равновесия (9) определяется дальнейшим ходом кривой  $\mu'(\bar{\xi}_b)$ . Как показано на рис. 3, кривая зависимости  $\bar{\xi}_b(\sigma_0)$  симметрична относительно  $\xi = 0.5$ , поэтому в одном из состояний равновесия, например m = 1, всегда  $\bar{\xi}_b < 0.5$ , во втором состоянии равновесия,  $\bar{\xi}_b > 0.5$ . Легко убедиться, что при переходе вещественного корня через точку  $\xi = 0.5$ , т.е. при переходе от одного состояния равновесия к другому, параметр  $\nu$  меняет знак при любых Ві. Для этого во втором из уравнений (23) необходимо положить  $\bar{\xi}_b = 0.5$ 



**Рис. 3.** Зависимости координаты фазовой границы от параметра Стекли. Ві: *1* — 0.1, *2* — 0.5, *3* — 1, *4* — 3, *5* — 7.



**Рис. 4.** Зависимость  $\mu^2$  (2 Bi) в точке ветвления стационарных решений при  $\sigma = \sigma_c$ .

вленный на рис. 4 график зависимости  $\mu^2 = \mu^2 (2\text{Bi})$  доказывает, что независимо от критерия Био смена знака параметра  $\nu_1$  всегда происходит в точке  $\bar{\xi}_b = 0.5$  и, следовательно, второе состояние равновесия всегда неустойчиво.

В области  $\bar{\xi}_b < \bar{\xi}_c$ , когда все собственные числа оператора (16) мнимые  $\mu_k = i\mu_k''(\bar{\xi}_b)$ , решения (17), (18) краевой задачи (8), имеют вид

$$\Theta_{s}(\xi,t) = \sum_{k=1}^{\infty} C_{k} \sin(\mu_{k}^{\prime\prime}\xi) \exp(\nu_{k}t),$$
  
$$\Theta_{n}(\xi,t) = \sum_{k=1}^{\infty} C_{k} \frac{\lambda_{s}}{\lambda_{n}} \frac{\sin(\mu_{k}^{\prime\prime}\bar{\xi}_{b})}{\cos\mu_{k}^{\prime\prime}(1-\bar{\xi}_{b})}$$
  
$$\times \cos\mu_{k}^{\prime\prime}(1-\xi) \exp(\nu_{k}t), \qquad (25)$$

где  $\nu_k = -\frac{a_s}{\delta^2} ({\mu''}_k^2 + 2Bi)$  — отрицательно и состояния равновесия устойчивы.

При  $\bar{\xi}_b > \bar{\xi}_c$  первое собственное значение оператора (16) становится вещественным  $\mu_1 = \mu'_1(\bar{\xi}_b)$ , а решения (25) преобразуются в

$$\Theta_{s}(\xi,t) = C \operatorname{sh}(\mu_{1}'\xi) \exp(\nu_{1}t) + \sum_{k=2}^{\infty} C_{k} \sin(\mu_{k}''\xi) \exp(\nu_{k}t),$$
  

$$\Theta_{n}(\xi,t) = C \frac{\lambda_{s}}{\lambda_{n}} \frac{\operatorname{sh}(\mu_{1}'\bar{\xi}_{b})}{\operatorname{ch} \mu_{1}'(1-\bar{\xi}_{b})} \operatorname{ch} \mu_{1}'(1-\xi)$$
  

$$\times \exp(\nu_{1}t) + \sum_{k=2}^{\infty} C_{k} \frac{\lambda_{s}}{\lambda_{n}}$$
  

$$\times \frac{\sin(\mu_{k}''\bar{\xi}_{b})}{\cos\mu_{k}''(1-\bar{\xi}_{b})} \cos\mu_{k}''(1-\xi) \exp(\nu_{k}t). \quad (26)$$

При  $\bar{\xi}_b > 0.5$  параметр  $\nu$  меняет знак и решение (26) становится экспоненциально неустойчивым.

## Исследование асимптотики стационарных решений

В заключение остановимся на физической природе неустойчивого состояния равновесия. Из соображений удобства переместим начало координат в центр пленки. Тогда стационарные решения (9) преобразуются в

$$\bar{\Theta}_{s}(\xi) = \frac{\operatorname{ch}\sqrt{2\mathrm{Bi}_{s}}(1-\xi)}{\operatorname{sh}\sqrt{2\mathrm{Bi}_{s}}(1-\bar{\xi}_{b}^{(m)})},$$
$$\bar{\Theta}_{n}(\xi) = \sigma + (1-\sigma)\frac{\operatorname{ch}\sqrt{\kappa}\xi}{\operatorname{ch}\sqrt{\kappa}\bar{\xi}_{0}^{(m)}},$$
(27)

а условие (10) примет вид

$$\operatorname{cth} \sqrt{2\operatorname{Bi}_{n} \frac{\sigma_{0}}{\sigma}} \,\overline{\xi}_{b} \operatorname{cth} \sqrt{2\operatorname{Bi}_{s}} (1 - \overline{\xi}_{b})$$
$$= (\sigma - 1) \sqrt{\frac{\lambda_{n}}{\lambda_{s}} \frac{\sigma_{0}}{\sigma}}.$$
(28)

Полагая  $\bar{\xi}_{b}^{(1)} < \bar{\xi}_{b}^{(2)}$ , рассмотрим состояние m = 2. При стремлении длины пленки к бесконечности, т.е. при вырождении системы по параметру  $\delta$  координата свободной границы  $\bar{\xi}_{b}^{(2)}$  также стремится к бесконечности, а температура нормальной фазы (27) — к пространственно однородному распределению

$$\bar{\Theta}_n(\xi) = \sigma. \tag{29}$$

Из (29) следует, что решение (27) соответствует состоянию, неоднородность которого обусловлена только близостью границы. При ее удалении на бесконечность система стремится к нормальному состоянию с однородным распределением температуры.



**Рис. 5.** Локально неоднородное состояние равновесия сверхпроводящей тонкой бесконечной пленки. Температурное поле соответствует параметрам системы  $\beta = 0$ ,  $\sigma = 3$ ,  $2\alpha/h\lambda_n = 10^6$ . Дополнительные построения служат иллюстрацией к закону равных площадей.

В случае m=1 предельный переход  $\bar{x}_b \to \infty$  приводит к выражениям

$$\bar{\Theta}_s(x) = \exp \sqrt{\frac{2\alpha}{h\lambda_s}}(\bar{x}_b^{(1)} - x),$$

$$\bar{\Theta}_n(x) = \sigma + (1 - \sigma) \frac{\operatorname{ch} \sqrt{2\alpha\sigma_0/h\lambda_n\sigma}x}{\operatorname{ch} \sqrt{2\alpha\sigma_0/h\lambda_n\sigma}\bar{x}_b^{(1)}}, \qquad (30)$$

где

$$\bar{x}_{b}^{(1)} = \sqrt{\frac{h\lambda_{n}}{2\alpha}\frac{\sigma}{\sigma_{0}}} \operatorname{arcth}(\sigma-1)\sqrt{\frac{\lambda_{n}}{\lambda_{s}}\frac{\sigma}{\sigma_{0}}}.$$
 (31)

Те же самые выражения были получены в [4] как автомодельные решения, описывающие локализованное пространственно неоднородное состояние равновесия сверхпроводящей бесконечно длинной пленки (рис. 5).

Интересно отметить, что соотношение (31), так же как и (10), непосредственно вытекает из закона сохранения энергии. Их несложно получить, уравняв полное тепловыделение и тепловые потери в системе. Для пленки бесконечной длины соотношение (31) допускает следующую простую геометрическую интерпретацию. Найдем площади  $S_1, S_2$  заштрихованных фигур на рис. 5

$$S_{1} = \int_{0}^{\bar{x}_{b}} \bar{\Theta}_{n}(x) dx = (\sigma - 1) \sqrt{\frac{h\lambda_{n}}{2\alpha} \frac{\sigma}{\sigma_{0}}} \operatorname{th} \sqrt{\frac{2\alpha}{h\lambda_{n}} \frac{\sigma_{0}}{\sigma}} \bar{x}_{b},$$
$$S_{2} = \int_{\bar{x}_{b}}^{\infty} \bar{\Theta}_{s}(x) dx = \sqrt{\frac{h\lambda_{s}}{2\alpha}}.$$
(32)

Приравняв  $S_1$  и  $S_2$ , вновь получаем соотношение (31), откуда следует, что  $S_1 = S_2$ . Последнее соотношение является своеобразным дополнением к закону равных площадей [5].

Самоподдерживающиеся локализованные неоднородные образования в диссипативных системах принято называть автосолитонами. В работе [4] состояние равновесия (30), (31) трактуется как автосолитон нормальной фазы, поскольку вопрос о его устойчивости на тот момент не был исследован. Выше то же самое состояние было получено как асимптотика неустойчивого решения при вырождении системы, поэтому можно ожидать, что оно останется неустойчивым и в случае пленки бесконечной длины.

Исследуем асимптотику характеристического уравнения (19), (20). При смещении начала координат в точку  $\xi = 1$  уравнения (19), (20), записанные для правой полуплоскости ( $\xi > 0$ ), преобразуются в

$$\bar{x}_{b}\sqrt{\frac{c_{vs}}{\lambda_{s}}\nu + \frac{2\alpha}{\lambda_{s}h}} \operatorname{cth} \sqrt{\frac{c_{vs}}{\lambda_{s}}\nu + \frac{2\alpha}{\lambda_{s}h}} (\delta - \bar{x}_{b})$$

$$- \bar{x}_{b}\sqrt{\frac{2\alpha}{\lambda_{s}h}} \operatorname{th} \sqrt{\frac{2\alpha}{\lambda_{s}h}} (\delta - \bar{x}_{b})$$

$$= -\bar{x}_{b}\sqrt{\frac{c_{vn}}{\lambda_{n}}\nu + \frac{2\alpha}{\lambda_{n}h}} \operatorname{th} \sqrt{\frac{c_{vn}}{\lambda_{n}}\nu + \frac{2\alpha}{\lambda_{n}h}} \bar{x}_{b}$$

$$+ \bar{x}_{b}\sqrt{\frac{2\alpha}{\lambda_{n}h}} \operatorname{cth} \sqrt{\frac{2\alpha}{\lambda_{n}h}} \bar{x}_{b}.$$
(33)

Будем считать, что теплопроводности обеих фаз равны  $\lambda_s = \lambda_n = \lambda$ , а теплоемкость претерпевает скачок при переходе в сверхпроводящее состояние  $c_{vs} = c_{vn} + \Delta c$ . Введя обозначения

$$z = \bar{x}_b \sqrt{\frac{c_{vn}}{\lambda}\nu + \frac{2\alpha}{\lambda h}}, \quad y = \bar{x}_b \sqrt{\frac{2\alpha}{\lambda h}}$$

и устремив длину пленки к бесконечности  $\delta \to \infty$ , получим

$$z \left[ \text{th} \, z \pm \sqrt{1 + \frac{\Delta c}{c_{vn}} \left( 1 - \frac{y^2}{z^2} \right)} \right] - y(\text{cth} \, y \pm 1) = 0, \quad (34)$$

где знак "плюс" соответствует правой фазовой границе.

Уравнение (34), как и (22), не имеет комплексных корней, а для вещественных z существует только один корень, причем такой, что z > y. Отсюда следует, что параметр

$$\nu = \frac{\lambda}{c_{\nu n} \bar{x}_b^2} (z^2 - y^2)$$

всегда положителен, а решение (30), (31) неустойчиво.

Этот результат означает, что локализованное неоднородное состояние равновесия, рассмотренное в [4], не является стационарным автосолитоном. Оно не может возникнуть самопроизвольно, а искусственно созданное распределение температуры (30), (31) будет неустойчиво. С другой стороны, очевидно, что при больших значениях переменных неявно заданная функция (34) стремится к явному виду y = z. Положив  $z - y = \varepsilon$ , где  $\varepsilon \ll 1$ , несложно получить следующую оценку:

$$\varepsilon \approx \frac{4}{2 + \Delta c/c_{nv}} z \exp(-2z),$$
  

$$\nu = \frac{\lambda}{\bar{x}_{h}^{2}} \frac{8}{2c_{n} + \Delta c} z^{2} \exp(-2z),$$
(35)

согласно которой при значениях  $y \gg 1$  характеристический показатель решения (26) практически равен нулю. Такое квазиустойчивое неоднородное образование может оставаться долгоживущим даже при сравнительно небольших размерах нормальной области  $\bar{x}_b \sim 10^{-3}$  m.

#### Заключение

Результаты проведенного анализа позволяют утверждать, что из найденных в [2] неоднородных состояний равновесия тонкой сверхпроводящей пленки с током устойчиво состояние, которому отвечает область нормальной фазы большей протяженности. То обстоятельство, что устойчивость исследовалась только по отношению к симметричным возмущениям, в данном случае несущественно, поскольку из двух состояний равновесия, как правило, неустойчиво лишь одно.

В состоянии равновесия с меньшими размерами нормальной фазы условия на границе пленки слабо влияют на тепловой баланс и неоднородное решение остается локализованным при переходе к пленке бесконечной длины. В бесконечно длинной пленке это решение также неустойчиво, но при определенных параметрах системы время релаксации к локально-однородному состоянию равновесия может достигать большой величины. Неустойчивость данного состояния равновесия означает невозможность самопроизвольной локализации нормальной фазы (образования стационарного автосолитона) в рассматриваемой системе. Более перспективными в этом смысле могут оказаться тонкие пленки на основе новых сверхпроводников. Как было показано в [2], в пленках с большим температурным коэффициентом сопротивления возможно более двух состояний равновесия, поэтому представляется интересным исследовать асимптотику соответствующих устойчивых решений.

#### Список литературы

- [1] Рудый А.С. // Письма в ЖТФ. 1996. Т. 22. Вып. 9. С. 85-92.
- [2] Franzen W. // J. Optic. Soc. Amer. 1963. Vol. 53. P. 596.
- [3] Rudy A.S., Kolesov A.Yu. // Nonlinear Analysis. 1997. Vol. 1.
- [4] Рудый А.С. // Письма в ЖТФ. 1996. Т. 22. Вып. 20. С. 62–67.
- [5] Гуревич А.Вл., Минц Р.Г., Рахманов А.Л. Физика композитных сверхпроводников. М.: Наука, 1987. 240 с.