Метастабильные фазы в протонообменных волноводах на *X*-срезе ниобата лития

© Д.И. Шевцов, И.С. Азанова, И.Ф. Тайсин, А.Б. Волынцев

Пермский государственный университет, 614990 Пермь, Россия E-mail: shevts@psu.ru

> Методами ИК-спектроскопии в рентгеновской дифрактометрии изучены формирование и распад высокотемпературных фаз в протонообменных волноводных слоях ($H_x Li_{1-x} NbO_3$) на X-срезе ниобата лития. Показано, что фазовые переходы в протонообменных слоях между высокотемпературными фазами, зафиксированными с помощью закалки при $T = 200^{\circ}$ С, и фазой, равновесной при комнатной температуре, сопровождаются изменением значений частот и интегральных интенсивностей спектральных компонент полос поглощения, характеризующих OH-группы и водородные связи в кристалле. Это указывает на существование двух способов перераспределения протонов при таких полностью обратимых фазовых превращениях: переход части протонов из позиций замещения в позиции внедрения, а также переход протонов в рамках позиций замещения с различным ионным окружением. Установлено, что фазовый переход в высокотемпературную фазу из фазы, равновесной при комнатной температуре, сопровождается возрастанием величины деформации кристаллической решетки в слое $H_x Li_{1-x} NbO_3$ ($x \approx 0.50$) более чем в 2 раза. Полученные экспериментальные данные подтверждают полную обратимость и бездиффузионный характер таких фазовых переходов.

> Работа выполнена при финансовой поддержке НОЦ Пермского государственного университета по программе "Неравновесные переходы в сплошных средах" (грант АФГИР РЕ-009).

PACS: 77.22.-d, 77.84.Dy, 64.70.Kb, 77.80.Bh

1. Введение

Существование нескольких высокотемпературных фаз (ВТФ) было обнаружено в твердом растворе ниобата лития (НЛ) и ниобиевой кислоты в виде порошка состава H_xLi_{1-x}NbO₃ с концентрацией водорода 0.56 < x < 0.76, что соответствует так называемым *β*-фазам [1]. В монокристаллических протонообменных (ПО) волноводных слоях $H_x Li_{1-x} NbO_3$ на Z-срезе НЛ в диапазоне концентраций 0.14 < x < 0.48 и температуры 40-250°С были обнаружены обратимые изменения показателя преломления, что было связано с фазовыми переходами [2,3]. Позднее было установлено, что в ПО слоях на Z-срезе НЛ с β_1 - и β_2 -фазами H_xLi_{1-x}NbO₃ (0.45 < *x* < 0.63) закалка при 200°С приводит кроме вариации показателя преломления к обратимому изменению периода кристаллической решетки, которое может достигать ~ 16% по отношению к периоду решетки, характеризующему равновесное состояние ПО слоя [4]. Цель настоящей работы заключалась в определении механизмов изменения структурных и оптических свойства при закалках слоев H_xLi_{1-x}NbO₃ с различной концентрацией протонов x на основе комплексного экспериментального исследования метастабильных состояний протонообменных слоев методами ИК Фурье-спектроскопии совместно с дифракционным структурным анализом и модовой спектроскопией.

2. Методика эксперимента

Для измерений колебательных спектров поглощения был применен Фурье-спектрофотометр IFS-66/s "Bruker" высокого разрешения (до 0.002 cm⁻¹), что позволило

провести сравнительный количественный анализ в ИК области спектра 400-8000 ст⁻¹. Относительные изменения периода кристаллической решетки є ПО слоев в направлении, нормальном к поверхности слоя, были измерены по дифрактограммам (кривым качания), записанным с помощью двухкристального рентгеновского спектрометра на базе дифрактометра ДРОН-УМ1 (Со, К-серия, *β*-линия). Измерения постоянных распространения в ПО волноводном слое на длине волны $\lambda = 632.8 \, {\rm nm}$ проводились с помощью метода модовой спектроскопии с последующим восстановлением распределения необыкновенного показателя преломления по глубине слоя $\Delta n_e(d)$ [5]. На поверхности пластин Х-среза НЛ конгруэнтного состава были приготовлены образцы волноводных слоев путем протонного обмена в расплаве бензойной кислоты при $T = 180-240^{\circ}$ С. Часть образцов содержала слои β_1 - и β_2 -фаз с $x \approx 0.44 - 0.63$, а часть — слой α -фазы с $x \approx 0.12$, полученный путем дополнительного отжига на воздухе при $T = 300 - 340^{\circ}$ C. Идентификация фазового состава была основана на сопоставлении измеренных в настоящей работе значений $\Delta n_e(0)$ и ε с экспериментальной зависимостью между ними [6]. Величина концентраций протонов х в слое оценена по значениям $\Delta n_e(0)$ [7]. Часть образцов НЛ была оставлена в исходном состоянии, т.е. являлась α -фазой с низкой концентрацией водорода (x < 0.01) [8]. Определение порядка залегания H_xLi_{1-x}NbO₃ фаз в ПО слое осуществлялось путем последовательного химического стравливания этого слоя в смеси $HF + HNO_3$ (2:1) при комнатной температуре и измерениях кривых качания. Все образцы были подвергнуты циклическому набору термообработок для измерений параметров, характеризующих ВТФ и фазы, равновесные при ком-

Рис. 1. Совмещенные спектры поглощения для образцов исходного НЛ, слоя α -фазы и слоя β -фаз как зависимости оптической плотности от частоты (*a*) и ОН полоса поглощения для образцов исходного НЛ (*b*), слоя α -фазы (*c*) и слоя β_1 -, β_2 -фаз (*d*). Цифрами обозначены: *1*, 3 — закалка (ВТФ); *2*, 4 — релакация (КТФ), 1' и 3' — выдержка после закалки.

натной температуре (КТФ): выдержка при $T = 200^{\circ}$ С в течение 10 min и быстрое (~ 100°С/min) охлаждение ("закалка"); выдержка при $T = 100^{\circ}$ С в течение 6–8 h и медленное (~ 0.2° С/min) охлаждение до комнатной температуры ("релаксация" при $T = 100^{\circ}$ С). Температура закалки была выбрана выше температуры, при которой формируется самая высокотемпературная из известных ВТФ, существующих в диапазоне концентраций протонов 0.44 < x < 0.71 [3]. Было показано, что выдержка при $T = 200^{\circ}$ С в течение 10 min не вызывает заметной потери протонов ПО слоем. Рентгеновские дифрактограммы, ИК-спектры и волноводно-оптические измерения выполнялись сразу после каждой термообработки.

3. Обсуждение результатов эксперимента

Типичные значения необыкновенного показателя преломления на поверхности ПО слоя, величины деформации кристаллической решетки, тип фазы и параметры, описывающие полосу поглощения ОН-группы, приведены в таблице для трех групп образцов.

ИК спектры (оптическая плотность D в зависимости от частоты излучения v) для двух полных циклов термообработок (рис. 1) подтверждают обратимость КТФ–ВТФ переходов. Эволюция ИК-спектров свидетельствует о полной воспроизводимости формы полосы поглощения при повторных термообработках в соответствующих режимах. Причем форма полосы поглощения

Параметры ПО слоев и НЛ при термообработках

Образец	Термообработка	$\Delta n_e(0)$	ε , $\times 10^{-3}$	η	ξ	Фаза
1	Релаксация Закалка	_		0.8 0.4	17.6 11.2	НЛ НЛ
2	Релаксация Закалка	0.0185 0.0187	1.1 —	0.7 0.8	2.3 2.2	lpha [6] $lpha$ [6]
3	Протонный обмен	0.1109	8.6; 3.6	_	—	β_1, β_2 [6]
	Закалка Релаксация	0.1073 0.0996	5.7 2.9	0.9 1.1	3.7 1.5	ВТФ КТФ

Рис. 2. Интегральные интенсивности спектральных компонент спектра поглощения образцов в ВТФ и КТФ состояниях.

в ходе каждого цикла заметно изменялась. ИК-спектры, измеренные после выдержки закаленных образцов при комнатной температуре (в течение 5-7 суток), характеризовались формой кривой поглощения, промежуточной между закаленным и релаксированным состояниями. Это указывает на эволюционное изменение спектров поглощения. Значения частот и интегральные интенсивности спектральных компонент полосы поглощения ОН-связи для образцов в КТФ- и ВТФ-состояниях были вычислены путем декомпозиции измеренных спектров (рис. 2). Некоторые вариации частот в ходе перехода КТФ-ВТФ связаны с изменениями длины ОН-связи. При анализе спектров поглощения было вычислено для каждого состояния образцов отношение *п* количества замещенных и междоузельных протонов. Этот параметр был определен как отношение интегральной интенсивности всех спектральных компонент ОН-полосы, пропорциональной концентрации протонов замещения, к интегральной интенсивности полосы, характеризующей водородные связи из-за наличия междоузельных протонов. Для β_1 - и β_2 -фаз при переходе КТ $\Phi \rightarrow BT\Phi$ параметр η заметно уменьшается (примерно в 2 раза), т.е. часть протонов замещения смещается из своих позиций в ОН-компоненте в междоузлия на расстояния, меньшие межатомных, так, что образуются водородные связи, не имеющие выделенного кристаллографического направления и характеризующиеся их гауссообразным распределением по частотам колебаний этих связей.

В ИК спектрах исходного НЛ была обнаружена слабая полоса поглощения в области 2850-3650 сm⁻¹

с формой, близкой к прямоугольной (рис. 1, *a*), что было связано с наличием водородных связей, причем характеризующихся квазиравномерным распределением по длине связи. Детерминированное поведение формы кривой поглощения в этой области спектра НЛ при многократных закалках (величина *η* уменьшалась примерно в 5 раз) позволило надежно установить наличие этой прямоугольной полосы, указывающей на присутствие хаотически расположенных протонов внедрения, хотя ранее считалось, что протоны в НЛ находятся только в виде ОН-комплекса [8]. По-видимому, эти протоны внедрения были абсорбированы образцом НЛ при механической обработке и находятся в приповерхностном слое. Для а-фазы эффект перераспределения протонов при переходах КТФ-ВТФ обнаружен не был. Заметим, что ИК спектры поглощения характеризуют ПО слой и подложку интегрально. Однако вклад протонов в интенсивность поглощения от подложки, т.е. от нелегированного НЛ, существенно меньше вклада от ПО слоя, поскольку концентрация протонов в ПО слое на несколько порядков выше, чем в исходном НЛ. Поэтому более стабильное поведение ИК спектров для образцов НЛ с ПО слоем α -фазы (рис. 1, *b*) характеризует именно α -фазу (вариация OH-полосы спектра, обнаруженная на образцах исходного НЛ, незаметна на фоне вклада от ПО слоя).

Конфигурационное перераспределение между протонами замещения, образующими ОН-комплекс при таких фазовых переходах, характеризовалось параметром ξ , который был определен как отношение интегральных интенсивностей основных спектральных компонентов (с наибольшей интегральной интенсивностью). Образцы с волноводным слоем, содержащим β_1 - и β_2 -фазы $H_r Li_{1-r} NbO_3$, характеризовались ростом ξ (примерно в 3 раза) при КТ $\Phi \rightarrow BT\Phi$. Это означает перераспределение протонов между структурно-неэквивалентными позициями в кислородной плоскости решетки НЛ в пользу позиций, характеризующихся более высокой частотой колебаний ОН-связи. Для исходного НЛ, напротив, ξ уменьшился (примерно в 2 раза), что соответствует переходу части протонов из позиций, характеризующихся более высокой частотой колебаний ОН-связи, в позиции, характеризующиеся более низкой частотой. Слой, содержащий α -фазу, сохраняет параметр ξ практически постоянным. Таким образом, слои, содержащие только α -фазу H_xLi_{1-x}NbO₃, являются более стабильными при закалках по сравнению с исходным НЛ и слоями β-фаз, для которых изменения спектров поглощения указывают на два механизма перераспределения протонов при обратимом переходе из КТФ в ВТФ: переход части протонов замещения в междоузельные позиции и переход протонов замещения между энергетически неэквивалентными ОН-комплексами. Кроме того, частоты колебаний ОН-групп также изменяются.

Остановимся подробнее на анализе структуры ПО слоев, содержащих β -фазы. Непосредственно после протонного обмена на поверхности НЛ образовались две

Рис. 3. Эволюция кривых качания. a — в процессе травления: 1 - 2, 2 - 4, 3 - 6, 4 - 8 и 5 — 10 min; b — при термообработках: 1 — после ПО, 2 и 4 — после закалки, 3 — после релаксации, 5 — выдержка 6 месяцев после закалки.

монокристаллические фазы (кривая 1, на рис. 3, а) с деформациями решетки $\varepsilon \approx 8.6 \cdot 10^{-3}$ и $\approx 3.6 \cdot 10^{-3}$ (см. таблицу). Сравнение с кривыми качания из [6] позволяет предположить, что эта система состоит из верхнего слоя β_2 -фазы ($\varepsilon \approx 3.6 \cdot 10^{-3}$) и нижнего слоя β_1 -фазы ($\epsilon \approx 8.6 \cdot 10^{-3}$). Для проверки этого предположения было проведено последовательное стравливание ПО слоя. Эволюция кривых качания при травлении представлена на рис. 3, а. Постепенное уменьшение интенсивности пика отражения, соответствующего фазе с более высоким значением деформации ($\varepsilon \approx 8.6 \cdot 10^{-3}$), означает, что именно эта фаза находится на поверхности ПО слоя. Следовательно, предположение о порядке залегания слоев неверно. Возможны два варианта интерпретации зволюции кривых качания при травлении: 1) на поверхности ПО слоя находится β_2 -фаза, причем с большим значением деформации, чем β_1 -фаза, аналогично ситуации на Z-срезе [6]; 2) на поверхности ПО слоя находится β_1 -фаза с большим значением деформации решетки, чем у β_2 -фазы, находящейся под ней. Но в первом варианте не подтверждается аномальное поведение β_2 -фазы на X-срезе, которое заключается в том, что β_2 -фаза, находящаяся на поверхности ПО слоя, имеет меньшее значение деформации, чем β_1 -фаза [6], а второй вариант противоречит порядку залегания β -фаз, установленному с помощью механического сполировывания верхних слоев в [6]. Возможно, что механическое удаление части ПО слоя приводит к искажению картины расположения слоев из-за приложенных напряжений. Заметим, что метод химического травления, использованный в настоящей работе, лишен этой погрешности.

Анализ кривых качания (рис. 3, b), записанных при циклических термообработках, выявил следующие закономерности: 1) фаза с более высоким значением деформации ($\varepsilon \approx 8.6 \cdot 10^{-3}$), образующаяся при протонном обмене на поверхности ПО слоя, при термообработках "закалка-релаксация" необратимо превращается в фазу с более низким значением деформации ($\varepsilon \approx 3 \cdot 10^{-3}$); 2) при закалке многократно воспроизводится одиночная ВТФ ($\varepsilon \approx 5.7 \cdot 10^{-3}$), а при релаксации — КТФ $(\varepsilon \approx 2.9 \cdot 10^{-3})$, при этом величина деформации кристаллической решетки в H_xLi_{1-x}NbO₃ слое возрастает примерно в 2 раза. Заметим, что на Z-срезе кристалла имеет место уменьшение деформации при таких же условиях закалки [4]. Таким образом, поведение монокристаллических слоев при закалках зависит от ориентации плоскости среза кристалла относительно оси симметрии НЛ. Анализ эволюции кривых качания указывает на обратимость фазовых переходов между КТФ и ВТФ как на X-срезе НЛ, так и на Z-срезе [4]. Сопоставление выводов, сделанных на основе анализа экспериментальных данных, дает основание заключить, что ПО слои, содержащие β₁- и β₂-фазы при комнатной температуре, переходят при $T = 200^{\circ}$ С в одиночную высокотемпературную фазу, схожую с КТФ β₁-фазой [6], тем не менее характеризующуюся наличием протонов внедрения.

4. Заключение

Методом ИК Фурье-спектроскопии было показано, что фазовые переходы КТФ–ВТФ в ПО слоях при термообработках до $T = 200^{\circ}$ С являются бездиффузионными с перемещениями протонов на расстояния меньше межатомных. Методом рентгеновской дифрактометрии обнаружено наличие обратимых фазовых переходов при термообработках в протонообменных слоях X-среза НЛ. Установлено, что фазовый переход КТФ — ВТФ может сопровождаться ростом значения деформации кристаллической решетки в ПО слое примерно в 2 раза. Показано, что на поверхности НЛ X-среза, как и на поверхности Z-среза, находится фаза с более высоким значением деформации.

Список литературы

- [1] C.E. Rice. J. Solid State Chem. 64, 188 (1986).
- [2] V.V. Atuchin, C.C. Ziling, D.V. Ibragimov, I. Savatinova. Optoelectronics, Instrumentation and Data Processing (Autometria) 1, 85 (2000).
- [3] I.E. Kalabin, V.V. Atuchin, T.I. Grigorieva. Optical Mater. 23, *1*–2, 281 (2003).
- [4] I.E. Kalabin, D.I. Shevtsov, I.S. Azanova, I.F. Taysin, V.V. Atuchin, A.B. Volyntsev, A.N. Shilov. J. Phys. D: Appl. Phys. 37, 1829 (2004).
- [5] Е.А. Колосовский, Д.В. Петров. Квантовая электрон. **8**, *12*, 2557 (1981).
- [6] Ю.Н. Коркишко, В.А. Федоров. Кристаллография 44, 2, 271 (1999).
- [7] Yu.N. Korkishko, V.A. Fedorov. J. Appl. Phys. 82, 2, 171 (1997).
- [8] J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Diequez. Advances in Physics 45, 5, 349 (1996).