Влияние зарядового состояния дефектов на индуцированную светом кинетику фотопроводимости аморфного гидрированного кремния

© О.А. Голикова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 29 мая 1997 г. Принята к печати 7 июня 1997 г.)

Проведены исследования фотопроводимости и плотности дефектов в пленках нелегированного *a*-Si: H под воздействием света ($W = 114 \text{ MBT/ cm}^2$, $\lambda < 0.9 \text{ мкм}$) в течение 5 ч. Показано, что $\sigma_{\text{ph}} \sim t^{-\gamma}$ и $N_D \sim t^{\beta}$, причем $\gamma > \beta$ или $\gamma \simeq \beta$ в зависимости от положения уровня Ферми до засветки, т.е. в зависимости от зарядового состояния дефектов: D^- и D^0 или D^+ и D^0 . Показано также, что на индуцированную светом кинетику σ_{ph} влияет переход дефектов в состояние D^0 за счет соответствующего сдвига уровня Ферми при засветке.

1. Введение

Стабильность фотоэлектрических параметров аморфного гидрированного кремния (a-Si:H), подвергнутого внешним воздействием (свет, электрическое поле и др.), остается одной из ключевых проблем, касающихся приборных применений этого материала. Эффект Стаблера-Вронского (СВ), открытый 20 лет назад, состоит в падении как темновой (σ_d), так и фотопроводимости ($\sigma_{\rm ph}$) *a*-Si:H под действием интенсивности засветки, т. е. происходит деградация $\sigma_{\rm ph}$ при сдвиге уровня Ферми (ε_F) в сторону середины щели подвижности. Далее было установлено, что при засветке возрастает плотность дефектов — оборванных связей Si-Si (N_D). Поскольку при этом применялся метод электронного парамагнитного резонанса (ЭПР), было сделано заключение, что индуцированные светом дефекты находятся в состоянии D^0 , и деградация $\sigma_{\rm ph}$ обусловлена ростом N_D .

Несмотря на очень большое число работ, посвященных исследованиям эффекта CB, его природа до сих пор остается не выясненной. В литературе имеются не однозначные, а иногда и противоречивые данные о роли различных структурных характеристик для эффекта CB, даже о роли водорода до сих пор ведутся дискуссии.

В последнее время вновь обратили внимание на то, что при засветке скорость падения $\sigma_{\rm ph}$ значительно выше, чем скорость возрастания N_D , т.е. индуцированные светом кинетики $\sigma_{\rm ph}$ и N_D различны [1]. Поэтому естественно предположить, что, помимо роста N_D, происходят другие изменения структуры пленки a-Si:H, влияющие на $\sigma_{\rm ph}$. Действительно, некоторые изменения структуры *a*-Si: Н при засветке были обнаружены, но их влияние на $\sigma_{\rm ph}$ пока остается не выясненным. Так, в [2] установили, что эффект СВ сопровождается уменьшением энтропии a-Si:H; предполагается, что происходит упорядочение структуры на уровне ближнего порядка. Кроме того, на основе данных ядерного магнитного резонанса (ЯМР) в [3] заключили, что эффект СВ сопровождается изменениями структуры пленки на уровне среднего порядка; предполагается, что это происходит вследствие изменения зарядового состояния дефекта. На основе модели перезарядки дефектов под действием засветки [4] авторы [5] объяснили особенности индуцированной светом

кинетики $\sigma_{\rm ph}$ пленок нелегированного *a*-Si: H, имеющих различную микроструктуру, определяемую температурой их осаждения ($T_s = 133 - 267^{\circ}$ C).

В настоящей работе исследовалась индуцированная светом кинетика $\sigma_{\rm ph}$ и N_D пленок *a*-Si:H, осажденных при $T_s = 300^{\circ}$ С и подробно охарактеризованных в [6]. Положение уровня Ферми нелегированного *a*-Si:H варьировалось в следующих пределах: $\varepsilon_c - \varepsilon_F = 0.45 - 0.85$ эВ (ε_c — край зоны проводимости). Соответственно этому изменялось зарядовое состояние дефектов: в направлении от D^- к D^0 и далее к D^+ [7]. Цель настоящей работы — определение влияния зарядового состояния дефектов на индуцированную светом кинетику $\sigma_{\rm ph}$ *a*-Si:H.

2. Эксперимент

Пленки освещались при комнатной температуре в течение 5 ч источником света со следующими характеристиками: $W = 114 \,\mathrm{mBm}/\mathrm{cm}^2, \,\lambda < 0.9 \,\mathrm{mkm}.$ Измеряемая в зависимости от времени освещения $\sigma_{\rm ph}$ аппроксимировалась степенной функцией: $\sigma_{\rm ph} \sim t^{-\gamma}$, где величина γ характеризует "скорость деградации" [8]. Фотопроводимость измерялась при комнатной температуре, скорости генерации носителей заряда $G = 10^{19}$ см⁻³ · с⁻¹, энергии фотонов $h\nu = 2$ эВ. Плотность дефектов также аппроксимировалась степенной функцией: $N_D \sim t^{\beta}$. Для определения N_D применялся метод постоянного фототока, дающий в отличие от ЭПР информацию о плотности дефектов независимо от их зарядового состояния. Темновая проводимость измерялась для определения сдвига уровня Ферми под влиянием засветки: $\varepsilon_c - \varepsilon_F = kT \ln \sigma_0 / \sigma_d$, где $T = 300^{\circ}$ K, $\sigma_0 = 150 \, \text{Om}^{-1} \cdot \text{см}^{-1}$.

3. Результаты эксперимента и их обсуждение

На рис. 1 представлены зависимости $N_D/N_D(0)$ от времени засветки для ряда исследованных пленок *a*-Si: Н (здесь $N_D(0)$ — плотность дефектов до засветки). На

Рис. 1. Индуцированная светом кинетика плотности дефектов в пленках *a*-Si: H. $\varepsilon_c - \varepsilon_F$, эB: 1 - 0.45, 2 - 0.55, 3 - 0.65, 4 - 0.70, 5 - 0.76, 6 - 0.82, 7 - 0.85.

Рис. 2. Зависимость параметра $\beta (N_D \sim t^{\beta})$ от положения уровня Ферми ($\varepsilon_c - \varepsilon_F$).

основе этих данных был определен параметр β , характеризующий скорость возрастания величины N_D, в зависимости от положения уровня Ферми, $\varepsilon_c - \varepsilon_F$ (рис. 2). Видно, что β сначала возрастает с ростом $\varepsilon_c - \varepsilon_F$, а затем несколько уменьшается. Максимальная величина β достигается для "собственного" *a*-Si:H $(\varepsilon_c - \varepsilon_F = 0.70 \, \mathrm{sB})$, имеющего до засветки минимальную плотность дефектов [6]. Следует отметить, что на данном отрезке времени засветки величина β не превышает 0.1, т. е. возрастание N_D очень медленное. При дальнейшем значительном увеличении времени засветки следует ожидать возрастания скорости роста N_D, как, например, в [9]. Однако тогда, в большинстве случаев, $N_D(t)$ уже нельзя аппроксимировать простой степенной функцией $(N_D(t))$ представляют в виде так называемой "растянутой" экспоненты). То же самое относится и к $\sigma_{\rm ph}(t)$. Поэтому мы ограничиваемся сравнительно не большим временем засветки, когда удобно сравнивать скорости изменения $\sigma_{\rm ph}$ и N_D (величины γ и β).

На рис. З представлены зависимости $\sigma_{\rm ph}/\sigma_{\rm ph}(0)$ от времени засветки для ряда исследованных пленок ($\sigma_{\rm ph}(0)$ — величина фотопроводимости до засветки). Величина γ как функция $\varepsilon_c - \varepsilon_F$ представлена на рис. 4. Видно, что на рис. 4 можно выделить две области: в области I $\gamma = 0.6-0.4$, затем наблюдается резкое падение γ , и в области II $\gamma < 0.1$. Таким образом, в области І $\gamma > \beta$, в области II — $\gamma \simeq \beta$, т. е. значительное расхождение между скоростью возрастания плотности дефектов и скоростью падения фотопроводимости наблюдается только для области I.

"Граница" между областями I и II соответствует величине $\varepsilon_c - \varepsilon_F$ собственно *a*-Si: Н. Именно эта точка является "особой" на кривых, представляющих не монотонные зависимости ряда структурных параметров от $\varepsilon_c - \varepsilon_F$ (рис. 5): плотности дефектов, содержания связанного водорода в пленке, параметра Урбаха, рамановской частоты ω_{TO} и ширины соответствующей полосы $\Delta\omega_{TO}$. Отмечаются также различия в величинах микроструктурного параметра, *R*, и оптической ширины щели подвижности, *E*_g. Кроме того, как показал анализ инфракрасных и рамановских спектров, пленки из области II отличаются более крупным масштабом неоднородностей структуры

Рис. 3. Индуцированная светом кинетика фотопроводимости пленок *a*-Si: H. Номера пленок и соответствующие $\varepsilon_c - \varepsilon_F$ такие же, как на рис. 1. Стрелками показаны пределы изменений $\lg \sigma_{\rm ph}/\sigma_{\rm ph}(0)$ для пленок 5–7.

Рис. 4. Зависимость параметра $\gamma (\sigma_{\rm ph} \sim t^{-\gamma})$ от положения уровня Ферми ($\varepsilon_c - \varepsilon_F$). На рисунке области I и II (пояснения см. в тексте).

Рис. 5. Параметры структуры пленок до их засветки в зависимости от уровня Ферми [6]. 1 — плотность дефектов, 2 — содержание связанного водорода, 3 — параметр Урбаха, 4 — рамановская частота TO-фононов, 5 — ширина TO-пика. На рисунке приведены также данные о микроструктурном параметре R, об оптической ширине щели подвижности E_g , и показаны области I и II (см. рис. 4).

Ec-Er

еV

по сравнению с пленками из области I. Тем не менее фотопроводимость монотонно падает с ростом $\varepsilon_c - \varepsilon_F$ [6]. В области I она падает при одновременном падении плотности дефектов, в области II — при ее возрастании; очевидно, что дефекты в указанных областях находятся в различных зарядовых состояниях: если в "собственном" *a*-Si:H ($\varepsilon_c - \varepsilon_F = 0.70$ эВ) дефекты находятся в нейтральном состоянии D^0 , то при движениях ε_F в сторону ε_c или ε_v все большая часть дефектов находится в заряженных состояних D^- или D^+ , как в *a*-Si:H, легированном донорными или акцепторными примесями [10].

Действительно, в области I фотопроводимость определяется не всеми дефектами (D^- и D^0), а только дефектами, имеющими большое сечение захвата электронов — D^0 , доля которых резко растет при приближении к $\varepsilon_c - \varepsilon_F = 0.70$ эВ. В противоположность этому в области II фотопроводимость определяется всеми дефектами (D^0 и D^+), плотность которых возрастает при отдалении от точки $\varepsilon_c - \varepsilon_F = 0.70$ эВ (рис. 5).

Вернемся теперь к обсуждению результатов об индуцированной светом кинетике фотопроводимости и рассмотрим вновь область I (рис. 4). Поскольку индуцированные светом дефекты находятся в состоянии D^0 , даже небольшое их число сильно увеличивает эффективное сечение захвата электронов. Поэтому и существует значительное расхождение между величинами γ и β . Что касается области II, то, как было сказано выше, значительного расхождения между величинами γ и β там не отмечается, поскольку образование индуцированных светом дефектов (D^0) не может сильно изменить эффективное сечение захвата электронов.

Таким образом, данные о индуцированной светом кинетике $\sigma_{\rm ph}$ (рис. 4) соответствуют данным, представленным на рис. 5, и интерпретируются на основе одних и тех же представлений.

Далее проводился анализ результатов, полученных для пленок a-Si:H, принадлежащих к области I, чтобы в явном виде определить зависимость фотопроводимости от плотности дефектов при засветке. На рис. 6 (кривая 1) $\sigma_{\rm ph}/\sigma_{\rm ph}(0)$ представлена как функция $N_D/N_D(0)$ для одной из пленок. До засветки она характеризуется величиной $\varepsilon_c - \varepsilon_F = 0.65$ эВ и, согласно [10], для нее $N_D^0/N_D^- \simeq 0.1$. Видно, что $\sigma_{\rm ph}/\sigma_{\rm ph}(0)$ резко падает с ростом N_D/N_D(0): степенная зависимость, близкая к $\sigma_{\rm ph} \sim N_D^{-5}$, отвечает существующему значительному расхождению между величинами β и γ (рис. 2 и 4). Исходя из того, что $\sigma_{\rm ph}$ определяется не всеми дефектами, а только теми из них, которые находятся в состоянии D^0 , можно было ожидать обратной пропорциональности между величинами $\sigma_{\rm ph}/\sigma_{\rm ph}(0)$ и $\Delta N_D/N_D(0)$, где ΔN_D — плотность фотоиндуцированных дефектов, но этого не наблюдается для пленок, принадлежащих к области І. Для рассматриваемой выше пленки получается зависимость, близкая к $\sigma_{\rm ph} \sim (\Delta N_D)^{-2}$ (рис. 6, кривая 2).

При проведенном анализе результатов, однако, не учитывался сдвиг уровня Ферми под действием засветки. Как следует из данных о σ_d рассматриваемой пленки, после 5 часов засветки ε_F сдвигается в точку, соответствующую собственному *a*-Si:H, где все дефекты

Рис. 6. Зависимость фотопроводимости от плотности дефектов при засветке (пленка 3, см. рис. 1 и 3) ($\sigma(0)$ и $N_D(0)$ — фотопроводимость и плотность дефектов до засветки). Кривая 1 построена в зависимости от $N_D/N_D(0)$, 2 — от $\Delta N_D/N_D(0)$, 3 — от плотности дефектов в состоянии D^0 (пояснение см. в тексте). 4 построена для пленки 4 (см. рис. 1 и 3) в зависимости от $N_D/N_D(0)$.

(существующие до засветки и индуцированные светом) находятся в состоянии D^0 . Поэтому, если на начальной стадии засветки, когда $N_{D^0}/N_{D^-} \simeq 0.1$, плотность дефектов в состоянии D^0 можно считать равной ΔN_D , то в конце засветки она равна N_D . Исходя из этого была построена кривая 3, рис. 6. Она с хорошей степенью точности действительно отражает обратную пропорциональность между $\sigma_{\rm ph}$ и плотностью дефектов, находящихся в состоянии D^0 .

Рассмотрим теперь данные, полученные для собственного *a*-Si:H. На рис. 6 представлена зависимость $\lg \sigma_{\rm ph}/\sigma_{\rm ph}(0)$ от $\lg N_D/N_D(0)$ для пленки N4 (кривая 4). Видно, что $\sigma_{\rm ph} \sim N_D^{-1}$ (это соответствует равенству β и γ , рис. 2 и 4), а поскольку здесь $N_D = N_{D^0}$, то $\sigma_{\rm ph} \sim N_{D^0}^{-1}$.

Как было показано выше, для пленки из области I аналогичный результат получается при обязательном учете изменения соотношения между N_{D^-} и N_{D^0} на начальной стадии засветки и сдвига уровня Ферми в точку $\varepsilon_c - \varepsilon_F = 0.70$ эВ в конце засветки. Очевидно, что для собственного *a*-Si:Н этого не требуется. Что касается пленок из области II, подвергнутых засветке, то определить влияние дефектов в состоянии D^0 на их фотопроводимость не удается, поскольку одновременно существующие дефекты в состоянии D^+ являются еще более эффективными центрами захвата электронов.

4. Заключение

В результате исследований индуцированной светом кинетики фотопроводимости ($\sigma_{
m ph} \sim t^{-\gamma}$) и плотности дефектов ($N_D \sim t^{\beta}$) для нелегированных пленок a-Si:Н при вариациях положения уровня Ферми $(\varepsilon_c - \varepsilon_F = 0.45 - 0.85$ эВ) было установлено, что соотношение между величинами γ и β сильно зависит от $\varepsilon_c - \varepsilon_F$. В области I, где $\varepsilon_c - \varepsilon_F = 0.45 - 0.69$ эВ, γ существенно выше, чем β . Далее происходит резкое уменьшение величины β , и в области II, при больших $\varepsilon_c - \varepsilon_F, \ \gamma \simeq \beta$. Особенности индуцированной светом кинетики $\sigma_{\rm ph}$ объясняются различиями зарядовых состояний дефектов в зависимости от положения ε_F : преимущественно D^- в области I, D^0 для собственного материала ($\varepsilon_c - \varepsilon_F = 0.70 \, \text{эB}$), преимущественно D⁺ в области II. Вследствие этого в области I даже сравнительно небольшое увеличение N_D при засветке приводит к значительному увеличению эффективного сечения захвата электронов, а для собстенного *a*-Si:H и в области II этого не происходит. Поскольку пленки собстенного a-Si: Н и пленки из области II отличаются более высокой стабильностью $\sigma_{\rm ph}$. Было установлено также, что на индуцированную светом кинетику фотопроводимости a-Si: Н влияет не только зарядовое состояние дефектов до засветки, но и его изменение в процессе засветки и в результате сдвигов уровня Ферми, происходящих так, что в конечном счете он находится в точке $\varepsilon_c - \varepsilon_F = 0.70$ эВ. При учете этого обстоятельства было показано, что фотопроводимость и плотность дефектов при засветке связаны следующим соотношением: $\sigma_{\rm ph} \sim N_{D^0}^{-1}$, которое для собственного *a*-Si: Н получается автоматически, так как для него $\gamma = \beta$, и все дефекты (до засветки и индуцированные) находятся в состоянии D^0 .

Таким образом, интерпретация данных об индуцированной светом кинетики фотопроводимости *a*-Si:H, полученных в настоящей работе, не требует привлечения предложений о каких-либо изменениях структуры в результате засветки, влияющих на σ_{ph} , кроме возрастания плотности дефектов. Однако изменения кинетики σ_{ph} в зависимости от положения уровня Ферми обусловлены выше перечисленными особенностями структуры пленок до их засветки, также зависящими от $\varepsilon_c - \varepsilon_F$: различные зарядовые состояния дефектов взаимосвязаны с особенностями структуры пленок *a*-Si:H.

Работа была поддержана грантом INTAS N 931916.

Список литературы

- P. Tzanetakis, N. Kopidakis, M. Androulidaki, C. Kalpouzos, P. Stradins, H. Fritzsche. MRS Symp. Proc., 377, 245 (1995).
- [2] C.M. Fortmann. R.M. Dawson, H.Y. Liu, C.R. Wronski. J. Appl. Phys., 76, 768 (1994).
- [3] H.M. Branz, P.A. Fedders. MRS. Symp. Proc., **338**, 129 (1994).
- [4] F. Irrera. J. Appl. Phys., 75, 1396 (1994).
- [5] D. Caputo, G. de Cesare, F. Irrera, F. Palma, M.C. Rossi, G. Conte, G. Nobile, G. Fameli. J. Non-Cryst., 170, 278 (1994).
- [6] О.А. Голикова, В.Х. Кудоярова. ФТП, 29, 1128 (1995).
- [7] О.А. Голикова. ФТП, **25**, 1517 (1991).
- [8] E. Sauvain, P. Pippoz, A. Shan, J. Hubin. J. Appl. Phys., 75, 1772 (1994).
- [9] P. Morin, C. Godet, B. Equer, P. Roca i Cabarrocas. Proc. 12 th European Photovoltaic Solar Energy Conference (Amsterdam, April 1994) 687.
- [10] M. Sturzmann, W.B. Jackson. Sol. St. Commun., 62, 153 (1987).

Редактор В.В. Чалдышев

Effect of a defect charge state on light induced kinetics of *a*-Si: H photoconductivity

O.A. Golikova

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences 194021 St. Petersburg, Russia

Abstract The investigations of photoconductivity and defect density in undoped *a*-Si:H films under light–soaking $(W = 114 \,\mu\text{W/cm}^{-2}; \lambda < 0.9 \,\mu\text{m}, 5\text{h.})$ have been carried out. It was shown that $\sigma_{\text{ph}} \sim t^{-\gamma}$, $N_D \sim t^{\beta}$ and $\gamma > \beta$ or $\gamma \simeq \beta$ depending on Fermi level position before the light–soaking i.e. depending on defect charge states: D^- and D^0 or D^+ and D^0 . It was also shown that the defect transitions to the D^0 charge state due to the Fermi level shifts under light soaking affect light induced kinetics of σ_{ph} .