Диэлектрическая дисперсия как признак появления полярной фазы в сегнетоэлектриках

© А.М. Лотонов, В.К. Новик, Н.Д. Гаврилова

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия

E-mail: novikmp@orc.ru

На примере 3D-зависимостей диэлектрической проницаемости $\varepsilon'_{22}(f, T)$ монокристалла триглицинсульфата показана общая для сегнетоэлектриков закономерность появления дисперсии в радиочастотном диапазоне непосредственно при переходе точки Кюри в полярную фазу. Этот факт использован для объективного непосредственного установления температуры фазового перехода.

PACS: 77.22.-d, 77.84.Jd, 77.80.Bh

На рис. 1 приведены зависимости действительной части диэлектрической проницаемости $\varepsilon'_{22}(f, t)$ совершенного образца сегнетоэлектрика триглицинсульфата (ТГС), измеренные¹ в интервале температур T = $= 46-51^{\circ}$ С и частотном диапазоне $f = 10^{-1}-2 \cdot 10^{7}$ Hz. Шаг температурных приращений составлял 0.1°C, частотный интервал был представлен 50 точками. Амплитуда измерительного поля равнялась 1 V · cm⁻¹. Частотный интервал снизу был ограничен значением 10^{-1} Hz, поскольку поля $f = 10^{-3} - 10^{-1}$ Нz вызывают изменения зависимостей $\varepsilon'_{22}(f,T)$ в области T_c с длительным последействием. Образец выдерживался в течение часа при $T = 60^{\circ}$ С, медленно охлаждался до 51°С, после чего начинались измерения $\varepsilon'_{22}(f, T)$ со снижением температуры до 46° C (рис. 1, *a*, *b*). Сразу по завершении этого сеанса измерения были продолжены в режиме повышения температуры до 51°С (рис. 1, с, d). Целостная картина позволяет проследить температурную эволюцию частотных зависимостей $\varepsilon'_2(f; T = \text{const})$ и составить мнение о причинах их различия, (ср. кривые на рис. 1, а и b с рис. 1, c и d), привлекая механизмы движения доменной стенки и локального переключения доменов $(f = 10^{-1} - 10^6 \text{ Hz})$ [1,2] или высокочастотного зажатия кристалла $(f = 10^5 - 2 \cdot 10^7 \,\mathrm{Hz})$ [3]. При охлаждении величина ε'_2 на гребне пика достигает гигантского значения $\varepsilon_{22}' \approx 4 \cdot 10^5$ (рис. 1, *a*, *b*), а сам пик в пределах заметной дисперсии расширен до 48°С (рис. 1, b). При нагревании же величина ε'_{22} на гребне пика снижается почти на порядок, а его основание суживается до 48.5°С. При термоциклировании подобные деформации зависимостей $\varepsilon'_{22}(f,T)$ являются общими, и этот принципиальный факт логично объяснить вкладом доменной стенки в измеряемую величину $\varepsilon'_{22}(f, T)$.

Согласно [1,2],

$$\varepsilon_{22}'(f,T) = \varepsilon_{22\mathrm{ind}}'(f,T) + \varepsilon_{22\mathrm{dom}}'(f,T), \qquad (1)$$

где ε'_{22ind} — индуцируемая компонента диэлектрической проницаемости монокристалла, определяемая его вос-

приимчивостью, ε'_{22dom} — доменная компонента диэлектрической проницаемости монокристалла, определяемая переполяризацией ячеек при движении доменной стенки в измерительном поле. Абсолютная величина ε'_{22dom} пропорциональная общей длине доменных стенок и спонтанной поляризации P_s .

На рис. 2, *a*, *b* приведены значения $1/\varepsilon_{22}'(f, T)$ для режима охлаждения (*a*) и нагрева (*b*). Штриховыми линиями показана расчетная зависимость $1/\varepsilon_{22ind}'(f, T)$, построенная в соответствии с "законом двойки" по $1/\varepsilon_{22}'(f, T)$ в парафазе. Поскольку значения $1/\varepsilon_{22}'(f, T)$ ниже 47°С близки для обоих режимов, на основании сопоставления экспериментальных и расчетных значений можно утверждать, что в обоих случаях при $T \leq 47^{\circ}$ С ε_{22ind}' составляет лишь шестую часть ε_{22dom}' , а в интервале 47– T_c — еще меньше. Таким образом, в совершенном кристалле, т.е. образце с нулевым внутренним полем смещения петли диэлектрического гистерезиса, практически все особенности проявления $\varepsilon_{22}'(f, T)$ вблизи T_c , включая частотную дисперсию, обусловлены реакцией доменной структуры на внешние воздействия.

Энергия активации ячеек, создающих доменную стенку, необходимая для их продвижения в направлении, нормальном к этой стенке, сущестенно больше kT. В то же время смещение крайних ячеек стенки (уступов) вдоль стенки требует энергии активации порядка kT [2]. Причина состоит в том, что при этом не меняется состояние двух из четырех связей ячейки и свободная энергия ячейки остается практически неизменной. Поэтому при формировании ε'_{22dom} наиболее эффективны округлые конфигурации доменов малого радиуса. Именно такие конфигурации возникают в матрице ТГС при охлаждении через точку Кюри [4]. Возможно, что их размер собственно в точке Кюри близок к параметрам ячейки, поскольку вклад ε'_{22dom} уже заметен при 49.1°С (рис. 1, *a*), где значение $P_s \approx 10^{-8}$ С · cm⁻² крайне мало.

По мере углубления в сегнетофазу вклад ε'_{22dom} уменьшается, поскольку как в режиме охлаждения, так и в режиме нагревания частотные зависимости (рис. 1) приобретают все более сглаженный вид. Такая закономерность в условиях возрастания P_s может быть вызвана только уменьшением эффективной длины до-

¹ В исследованиях использовался спектрометр Novocontrol "Concept 40" с полосой частот $10^{-3} - 2 \cdot 10^7$ Hz, температурный интервал T = 120 - 650 K.

Рис. 1. Зависимости $\varepsilon'_{22}(f, T)$ высокосовершенного монокристалла ТГС в режиме охлаждения (a, b) и нагревания (c, d). Жирными линиями (a, c) выделены частотные зависимости для температуры 49.2°С, при которой дисперсии не наблюдается, и 49.1°С, когда дисперсия уже имеет место. Температура T_c выбрана как средняя между ними.

менной стенки, т. е. укрупнением доменов. Произведение этих двух разнонаправленных зависимостей должно дать экстремум ε'_{22dom} в узкой температурной области. Этот экстремум и представлен гребнем $\varepsilon'_{22}(f, T)$, температура которого при охлаждении равна 48.8°С (рис. 1, *a*, *b*), при нагреве — 48.7°С (рис. 1, *c*, *d*), т. е. остается практически постоянной. При этом абсолютное значение пика в режиме охлаждения всегда должно быть бо́лышим вследствие исходно измельченной доменной структуры.

Анализ параметров сегнетоэлектрического фазового перехода требует объективного установления температуры Кюри T_c . Из рис. 1 и 2, *а*, *b* нетрудно видеть, что в определении значения T_c по пересечению зависимостей $1/\varepsilon'_{22}(f,T)$ пара- и сегнетофазы неизбежен заметный произвол, обусловленный и частотной дисперсией, и предысторией образца. Вместе с тем температуре появления полярной фазы сопутствует фундаментальная осо-

бенность, продиктованная принципом Кюри–Неймана — появление антипараллельно поляризованных областей (доменов). Соответственно при этой же критической температуре появляется частотная дисперсия в зависимости $\varepsilon'_{22}(f, T)$. На рис. 1, *а*, *с* показано определение T_c как средней температуры между 49.2°С, при которой дисперсии не наблюдается, и 49.1°С, когда дисперсия уже имеет место.

Из (1) следует еще один прием непосредственного определения T_c . Зависимость $\varepsilon'_{22ind}(f, T)$ не должна зависеть от предыстории образца, что подтверждается практическим равенством значений $1/\varepsilon'_{22ind}(f, T)$ в области парафазы (рис. 2, *a* и *b*). В этом случае при вычитании поверхности $\varepsilon'_{22}(f, T)$, показанной на рис. 1, *c*, *d*, из поверхности $\varepsilon'_{22}(f, T)$, приведенной на рис. 1, *a*, *b*, разность $\Delta \varepsilon'_{22dom}(f, T)$ при охлаждении и нагревании должна наглядно выделить температуру T_c .

Рис. 2. Зависимости $1/\varepsilon'_{22}(f, T)$ высокосовершенного монокристалла ТГС в режиме охлаждения (*a*) и нагревания (*b*). *с* — зависимость $\Delta \varepsilon'_{22dom}(f, T)$.

На рис. 2, с представлена эта разность $\Delta \varepsilon'_{22dom}(f,T)$ и жирными линиями выделены частотные зависимости без дисперсии при 49.2°С и с дисперсией при 49.1°С. В результате абсолютное значение температуры Кюри ТГС при градуировке термометра прибора определяется как равное $T_c = 49.15$ °C с погрешностью $\delta T < \pm 0.05$ °C.

Прием с вычитанием поверхностей должен быть полезен и при исследовании узкой (49.5–49.15°С) весьма специфической области предпереходных явлений. Такое исследование может пролить свет на достоверность флуктуационной теории фазовых переходов второго рода [5].

Список литературы

- [1] В.М. Петров, О.И. Коган. Кристаллография **15**, *5*, 1018 (1970).
- [2] В.М. Петров. Изв. АН СССР. Сер. физ. 33, 7, 1113 (1969).
- [3] J. Fousek, V. Janousek. Phys. Stat. Sol. 13, 1, 195 (1966).
- [4] J. Fousek, M. Šafránková. Proc. Int. Meet. on Ferroel. Prague, Czechoslovakia (1966). Vol. II. P. 99.
- [5] А.П. Леванюк. Изв. АН СССР. Сер. физ. 29, 6, 879 (1965).