Фотолюминесценция рекристаллизованного наносекундным лазерным облучением теллурида кадмия

© В.Н. Бабенцов, Н.И. Тарбаев

Институт физики полупроводников Национальной академии наук Украины, 252650 Киев, Украина

(Получена 28 января 1997 г. Принята к печати 25 февраля 1997 г.)

Исследовано влияние лазерного облучения наносекундной длительности на морфологию и низкотемпературную фотолюминесценцию *n*-CdTe при плотностях мощности, приводящих к плавлению материала $(0.2 \div 0.5 \,\text{Дж/cm}^2)$. После перекристаллизации материал имеет поверхность типа "апельсиновой корки". Спектр низкотемпературной фотолюминесценции соответствует монокристаллическому *p*-CdTe низкого качества с большим содержанием дислокаций и комплексов точечных дефектов. Лазерное воздействие производит эффект дальнего действия и приводит к существенному изменению примесно-дефектной системы, характерному для конверсии типа проводимости $n \rightarrow p$, на расстоянии более 50 мкм от места поглощения излучения.

Введение

Ранее мы исследовали воздействие на примесно-дефектную систему теллурида кадмия импульсного лазерного излучения (ИЛИ) с относительно малой плотностью энергии в импульсе (до 150 мДж/см²) [1,2]. Такое излучение в зависимости от предыстории образца и режимов ИЛИ может создавать новые или отжигать уже имевшиеся в кристалле CdTe дефекты.

Было показано, что до достижения порога плавления CdTe $(0.2 \div 0.3 \,\text{Дж/см}^2)$ на его поверхности образуется тонкий слой аморфного теллура (толщиной $10 \div 20 \,\text{нм}$), который со временем кристаллизуется, образуя поликристаллическую пленку. Под этой пленкой располагается слой материала, обедненный кадмием на глубину $30 \div 40 \,\text{нм}$ и представляющий собой нестехиомерическое соединение Cd_xTe_{1-x}, где $x = 0.3 \div 0.5$.

Под слоем нестехиометрического теллурида кадмия расположен слой материала, в котором в процессе релаксации упругих напряжений образуется дислокационная сетка [3]. Низкотемпературная фотолюминесценция (ФЛ) и электрофизические свойства в этой области сильно отличаются от свойств исходного материала, в общем случае проявляя тенденцию к уменьшению проводимости и появлению в спектре низкотемпературной ФЛ новых полос, связанных с рекомбинацией на комплексных дефектах, таких как nV_{Cd} или $nV_{Cd} + M_{Cd}$, где *n* — количество одиночных вакансий, *M* — примесь I группы. В данной работе исследовано влияние ИЛИ наносекундной длительности на морфологию и низкотемпературную ФЛ n-CdTe при плотностях мощности, приводящих к плавлению материала $(0.2 \div 0.5 \, \text{Дж/см}^2)$. Показано, что после перекристаллизации материала его поверхностный слой теряет свою исходную зеркальность и приобретает морфологию типа "апельсиновой корки". На нем наблюдается спектр низкотемпературной ФЛ, соответствующий монокристаллическому p-CdTe с большим содержанием дислокаций и комплексов точечных дефектов.

Методика эксперимента

Образцы *n*-CdTe получали путем отжига при температуре $T_a = 500 \div 600^{\circ}$ C пластин специально не легированного *p*-CdTe с концентрацией дырок $p < 10^{15}$ см⁻³ в атмосфере насыщенных паров кадмия в запаянной амплуле, содержащей образец и навеску кадмия [4].

После удаления поверхностного слоя отожженной пластины на глубину 100 ÷ 200 мкм полированием в растворе брома в метаноле оставшаяся часть пластины представляла собой однородно легированный по толщине материал *n*-типа проводимости с концентрацией электронов $n = (2 \div 5) \cdot 10^{15} \text{ см}^{-3}$.

Ориентация пластин соответствовала плоскости {111}.

Образцы перед обработкой помещались на держатель, позволяющий линейно перемещать их перпендикулярно направлению лазерного луча со скоростью $V = 100 \div 200$ мкм/с.

Обработка образцов ИЛИ проводилась при комнатной температуре на воздухе с использованием YAG:Nd-лазера (работающего в режиме модулированной добротности с частотой повторения 10 Гц и длительностью импульса 20 нс, длина волны излучения $\lambda = 0.63$ мкм) через щель шириной 80 мкм, расположенную на расстоянии 50÷100 мкм от поверхности образца.

При фокусировке лазерного луча в пятно диаметром 20 мкм используемая частота повторения импульсов обеспечивала условия, когда каждая точка образца обрабатывалась 10 ÷ 20 импульсами при заданной скорости перемещения лазерного луча вдоль щели и образовывалась полоса обработанного материала. После получения одной полосы щель параллельно смещали на 100 ÷ 200 мкм и повторяли обработку. Так получали последовательно чередующиеся полосы обработанного и необработанного материала.

После лазерной обработки поверхность образца исследовали на электронном микроскопе (контраст во вторичных электронах). Далее на них измеряли спектры низкотемпературной фотолюминесценции (температура измерения T = 4.2 K). Для получения пространственного распределения излучения фотолюминесценции с заданной длиной волны область фотовозбуждения (сфокусированное в пятно диаметром 50 мкм излучение He–Ne-лазера мощностью 40 мВт с длиной волны $\lambda = 632.8$ нм) перемещали по образцу в направлении, перпендикулярном обработанным лазером дорожкам таким образом, что регистрируемое излучение всегда было сфокусировано на входную щель спектрального прибора МДР-23.

Экспериментальные результаты и обсуждение

1. Морфология поверхности. На рис. 1, а представлена фотография поверхности образца *p*-CdTe во вторичных электронах после его обработки лазерным излучением. Дорожки, поверхность которых напоминает апельсиновую корку, образовались в результате переплавки материала лазерным излучением и его последующей кристаллизацией на воздухе. Между ними расположены дорожки необработанной поверхности исходного материала, которые оставались зеркально гладкими. Ширина обработанных и необработанных дорожек на поверхности образца составляет 80 ÷ 120 мкм.

2. Низкотемпературная фотолюминесценция. На рис. 2, а показан спектр низкотемпературной ФЛ исходного *n*-CdTe, который содержит в области связанных экситонов две сравнимые по интенсивности линии экситонов: I_1 — линию экситонов, связанных на нейтральных мелких акцепторах (Li_{Cd}, Na_{Cd}, Cu_{Cd}, P_{Te}), и I_2 — линию экситонов, связанных мелких донорах (Li_i, Na_i, Cu_i) [5].

В области краевой донорно-акцепторной (Д–А) фотолюминесценции признаком *n*-типа проводимости CdTe является полоса с максимумом 810 нм, связанная с акцепторным состоянием фосфора P_{Te} , доминирующая в области длин волн 800 ÷ 820 нм [4].

После лазерной обработки спектр $\Phi Л$ радикально изменяется не только в области переплавленного материала (дорожки с поверхностью апельсиновой корки), но и между этими областями (рис. 2, спектры *b*, *c*), т. е. там, где переплавки материала не происходило.

Основным изменением в спектре переплавленного материала в сравнении с исходным является сильное (в 20 ÷ 40 раз) уменьшение интенсивности излучения в области связанных экситонов и в области Д–А излучения 800 ÷ 820 нм. При этом в спектре ФЛ появилась доминирующая по интенсивности новая полоса с максимумом 840 нм, обусловленная, как принято считать, рекомбинацией на комплексных дефектах, включающих в себя вакансии кадмия и атомы остаточных примесей металлов I группы [6], которая индуцируется также пластической деформацией объемного материала или абразивной обработкой его поверхности [7]. Весьма

Рис. 1. Пространственное распределение вторичных электронов в электронном микроскопе при возбуждении поверхности обработанного лазерным излучением образца *n*-CdTe (*a*), а также интенсивностей полос низкотемпературной фотолюминесценции 780 нм (*b*) и 840 нм (*c*) при сканировании по координате *x* в направлении, перпендикулярном полоскам обработанного материала.

примечательно при этом, что в спектре полностью исчезла линия *I*₂, что характерно для материала *p*-типа проводимости [4].

На рис. 1, *b*, *c* приведены профили распределения интенсивности низкотемпературной ФЛ полос в области 840 и 780 нм, полученные в результате сканирования пятном возбуждения перпендикулярно дорожкам, полученным лазерной обработкой.

Пространственная корреляция экстремумов полос свидетельствует о взаимосвязи рекомбинационных механизмов в этих полосах.

Значительные изменения спектра низкотемпературной $\Phi \Pi$ произошли также и в областях, где материал не был переплавлен вследствие нагрева лазерным излучением, т. е. там, где максимальна интенсивность линии I_1 .

В точке, равноудаленной от соседних дорожек переплавленного CdTe, в спектре ФЛ линия I_2 также практически отсутствует, а полоса Д–А излучения 810 нм уже не является доминирующей в области 800 ÷ 820 нм (рис. 2, спектр *b*). В спектре доминирует полоса 804 нм, что характерно для материала *p*-типа проводимости [4].

Рис. 2. Спектры низкотемпературной фотолюминесценции CdTe: *a* — исходный необработанный материал *n*-типа проводимости; *b* — участок, расположенный в середине между дорожками обработанного лазерным излучением материала; *с* — перекристаллизованный материал, имеющий морфологию поверхности типа апельсиновой корки.

Таким образом, на основании анализа спектров низкотемпературной ФЛ можно заключить, что лазерный нагрев материал n-CdTe, обогащенного атомами избыточного кадмия, приводит к преимущественному удалению из него кадмия и образованию вакансий кадмия.

Такой же результат был получен ранее [8] при измерении на масс-спектрометре состава потока атомов, вылетающих при лазерной обработке теллурида кадмия. Как было показано в этой работе, при установлении стационарного потока количество атомов кадмия в потоке в четыре раза превышает количество атомов теллура. Таким образом, приповерхностный слой материала при лазерном облучении обедняется кадмием, а на поверхности образуется пленка аморфного теллура.

Вакансии кадмия, образующиеся в приповерхностном слое, диффундируют в глубь и в стороны от обработанных лазерным излучением участков материала. Они заполняются атомами остаточных примесей I группы, создавая однозарядные акцепторы, обусловливающие *p*тип проводимости.

В области переплавленного материала "пересыщенный твердый раствор" вакансий кадмия конденсируется, приводя к образованию дислокационных петель и комплексных дефектов, что, с одной стороны, приводит к падению квантового выхода излучательной рекомбинации, а с другой — к появлению новой полосы 840 нм, не наблюдавшейся в ФЛ исходного, близкого к стехиометрическому, теллурида кадмия.

Сканирование точки возбуждения ФЛ поперек обработанных ИЛИ полос показывает, что эффект лазерной обработки является весьма дальнодействующим и распространяется вдоль поверхности образца на расстояние, превышающее 50 мкм (профили интенсивностей линии I_1 и полосы 840 нм приведены на рис. 1, *b*, *c*).

Столь большое расстояние, на которое действует лазерная обработка, очень трудно объяснить распространением теплового потока от наносекундного лазерного импульса. По-видимому, более существенными являются в данном случае диффузия вакансий кадмия и активная роль в этом процессе дислокаций (обычно плотность дислокаций составляет $(0.5 \div 1.0) \cdot 10^5$ см⁻²).

Заключение

В работе показано, что:

1) лазерная перекристаллизация *n*-CdTe на воздухе приводит к получению материала, имеющего спектр низкотемпературной $\Phi Л$, характерный для теллурида кадмия *p*-типа проводимости низкого качества (большое количество дислокаций, двойников, точечных комплексных дефектов и т.д.);

2) лазерная обработка импульсами наносекундной длительности производит эффект дальнего действия; изменение спектра ФЛ в точке, более чем на 50 мкм отстоящей от места поглощения лазерного излучения, свидетельствует о существенном изменении примесно-дефектной системы, характерном для конверсии типа проводимости $n \rightarrow p$.

Список литературы

- В.Н. Бабенцов, А. Байдуллаева, Б.М. Булах, С.И. Горбань, П.Е. Мозоль, Б.К. Даулетмуратов. Поверхность. Физика, химия, механика, 12, 144 (1988)
- [2] А. Байдуллаева, Б.М. Булах, Б.К. Даулетмуратов, Б.Р. Джумаев, Н.Е. Корсунская, П.Е. Мозоль, Г. Гарягдыев. ФГП, 26, 801 (1992).
- [3] В.Н. Бабенцов, А. Байдуллаева, А.И. Власенко, С.И. Горбань, Б.К. Даулетмуратов, П.Е. Мозоль. ФТП, 27, 1618 (1993).

- [4] Н.В. Агринская, В.В. Шашкова. ФТП, 22, 1248 (1988).
- [5] E. Molva, J.P. Chamonal, J.L. Pautrat. Phys. St. Sol. (b), 109, 635 (1982).
- [6] В.Н. Бабенцов, Б.М. Булах, С.И. Горбань, Л.В. Рашковецкий, Е.А. Сальков. ФТП, 23, 1560 (1989).
- [7] В.Н. Бабенцов, С.И. Горбань, Е.А. Сальков, Н.И. Тарбаев. ФТП, **21**, 1724 (1987).
- [8] J.J. Dubovski, P.K. Bhat, D.F. Williams, P. Becla. J. Vac. Sci. Technol. A, 4, 1879 (1986).

Редактор Л.В. Шаронова

Photoluminescence of cadmium telluride after recrystallization by nanosecond laser irradiation

V.N. Babentsov, N.I. Tarbaev

Institute of Semiconductor Physics, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine