Дрейфовая подвижность фотогенерированных носителей заряда в кристаллах Bi₁₂GeO₂₀

© С.Н. Пляка, Г.Х. Соколянский

Днепропетровский государственный университет, 320625 Днепропетровск, Украина

(Поступила в Редакцию 14 мая 1998 г.)

Экспериментально исследована дрейфовая подвижность фотогенерированных электронов и дырок в кристаллах Bi₁₂GeO₂₀ с различной степенью легирования.

Исследованию подвижности фотогенерированных носителей заряда в силленитах германия и кремния с использованием времяпролетной методики посвящен ряд работ [1-4]. В работах [5-7] перенос заряда исследуется методом прямого измерения распределения напряженности электрического поля с помощью поперечного электрооптического эффекта. Наблюдается очень широкий спектр ее значений: от 10^{-5} cm²·V⁻¹·s⁻¹ в образцах с пустыми ловушками [2] до величины $\ge 10 \, \text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, полученных в [3] с помощью техники с высоким временным разрешением при зона-зонной генерации. В большинстве исследований изучался перенос электронов. В настоящей работе сообщается о некоторых результатах измерений подвижности фотогенерированных электронов и дырок в кристаллах Bi₁₂GeO₂₀, как номинально чистых, так и легированных ионами ванадия.

Исследования выполнены на кристаллах, выращенных методом Чохральского. Легирование проводилось введением в шихту V2O5 в количестве 0.2, 0.5 и 1 mol. %. Подвижность измерялась как с помощью метода стационарных токов, ограниченных объемным зарядом (ТООЗ), так и с применением времяпролетной методики (ВП). Использовались образцы в виде плоскопараллельных пластин толщиной $d \leq 1 \,\mathrm{mm}$. При ТООЗ-измерениях отполированный торец образца освещался светом с длиной волны $\lambda = 400 \, \mathrm{nm}$, интенсивностью $\sim 10 \,\mu \mathrm{W} \cdot \mathrm{cm}^{-2}$. При ВП-исследованиях использовались одиночные импульсы света от лампы ИСШ-400, прошедшие через стеклянный светофильтр с максимумом пропускания при $h\nu \approx 3.4\,{\rm eV}$, что близко к значению ширины запрещенной зоны Bi₁₂GeO₂₀.

Для получения воспроизводимого сигнала при ВП-измерениях образец предварительно выдерживался в темноте с закороченными электродами в течение 5 min, а измерительное поле прикладывалось не более чем на 1 min. В таком случае заметное изменение сигнала фотопереноса прекращалось после освещения образца несколькими вспышками. При измерении вольт-амперных характеристик (BAX) каждая экспериментальная точка записывалась через 600 s после включения света, когда устанавливалось стационарное значение фототока. За это время в объеме образца образуется неоднородное распределение поля [6,7]. Таким образом, в обоих случаях производились измерения в состоянии кристалла с заполненными ловушками.

Анализ ВАХ показывает [8,9], что как в случае монополярной, так и при двойной инжекции (ДИ) может наблюдаться квадратичный участок зависимости тока от напряжения, описываемый формулой

$$j = \frac{9}{8} \varepsilon \mu_{\rm ef} \frac{U^2}{d^3},\tag{1}$$

где d — толщина образца, $\mu_{\rm ef}$ — эффективная подвижность носителей. В случае ДИ при близких значениях подвижности электронов и дырок $\mu_{\rm ef}$ характеризует амбиполярный дрейф. На экспериментальных ВАХ, снятых при однородном освещении, после участка довольно резкого нарастания наблюдается квадратичная зависимость тока от напряжения. Определенные с применением соотношения (1) значения подвижности составляют величину $\mu \ge 10^{-3} \, {\rm cm}^2 \cdot {\rm V}^{-1} \cdot {\rm s}^{-1}$ (см. таблицу).

Образец	$\begin{array}{c} \mu, \ 10^{-3} \\ \mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1} \end{array}$	$\mu_n, \ \mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}$	$ au_n, \ 10^{-4} ext{ s}$	$E_{\mu n},$ eV	$\mu_p, \ \mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}$	$ au_p, \ 10^{-4} \ { m s}$	$E_{\mu p},$ eV
BGO	1	$3.6 \cdot 10^{-2}$	6.5	0.32	$1.1 \cdot 10^{-2}$	4.5	0.52
$\begin{array}{c} BGO+0.2\\ mol.\%\ V_2O_5 \end{array}$	6.8	$1.37\cdot 10^{-1}$	1.8	0.2	$1.95\cdot 10^{-1}$	1.94	0.2
$\begin{array}{l} BGO+0.5\\ mol.\ \%\ V_2O_5 \end{array}$	1.5	$6.97 \cdot 10^{-2}$	1.55	0.31	$1.12\cdot 10^{-1}$	1.8	0.29
$\begin{array}{l} BGO+1\\ mol. \ \% \ V_2O_5 \end{array}$	1.2	$4 \cdot 10^{-2}$	1	0.36	$9 \cdot 10^{-2}$	1.3	0.32

Значения параметров фотопереноса в Bi12GeO20

Временная зависимость фототока в кристалле $Bi_{12}GeO_{20} + 1 \text{ mol.}\% V_2O_5$ при напряжениях (в V): 1 - 300, 2 - 500, 3 - 600 (температура $60^{\circ}C$).

При ВП-исследованиях получены сигналы как гауссовского, так и дисперсионного переноса [10]. Последний наблюдался в чистом Bi₁₂GeO₂₀ при температуре выше 60°С. В кристаллах с ванадием при температурах ниже 80°С перенос гауссовский. На полученных импульсах (см. рисунок) можно выделить два участка спадания фототока. За время пролета T_n нами принималось время окончания более пологого участка. График $T_n^{-1} = f(U)$ представляет собой прямую линию, что свидетельствует о независимости подвижности от поля. На втором участке спадание сигнала I(t) экспоненциальное. Это позволяет определить время жизни фотогенерированных носителей заряда. В случае дисперсионного переноса время T_n определялось по излому графика $\lg I - \lg t$. Значения подвижности, определенные из сигналов обоих типов, ложатся на одну прямую на графике $\mu(T)$, построенном в координатах Аррениуса.

На всех исследованных образцах получены сигналы переноса как фотогенерированных электронов, так и дырок. Значения подвижности и времени жизни электронов (μ_n , τ_n) и дырок (μ_p , τ_p) приведены в таблице. В нелегированном Bi₁₂GeO₂₀ произведение $\mu\tau$ для электронов несколько выше, чем для дырок, оставляя близким по порядку величины для обоих типов носителей. Значения μ_n и τ_n хорошо согласуются с литературными данными, полученными на образцах с заполненными ловушками [1,2,4]. Введение ванадия приводит к выполнению обратного соотношения ($\mu\tau$)_p > ($\mu\tau$)_n. Во всех случаях отличие между ($\mu\tau$)_n и ($\mu\tau$)_p не превышает одного порядка. С ростом концентрации ванадия значения подвижности и времени жизни как электронов, так и дырок уменьшаются. С увеличением температуры подвижность фотогенерированных носителей заряда возрастает экспоненциально с энергией активации $E_{\mu n}$ и $E_{\mu p}$.

Тот факт, что полученные из анализа ВАХ величины подвижности μ для всех кристаллов меньше, чем определенные по ВП-методике значения μ_n и μ_p , может свидетельствовать о том, что при однородном освещении в образце перемещаются одновременно и электроны, и дырки. При этом μ имеет смысл амбиполярной дрейфовой подвижности [11]. Значения подвижности порядка $10^{-1}-10^{-2}$ сm² · V⁻¹ · s⁻¹ характерны для прыжковой проводимости в хвостах плотности состояний [12]. Это согласуется с наличием в кристаллах силленитов хорошо развитого плеча оптического поглощения [13].

Список литературы

- S.L. Hou, R.B. Lauer, R.E. Aldrich. J. Appl. Phys. 44, 6, 2652 (1973).
- [2] В.Х. Костюк, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ 22, 8, 2454 (1980).
- [3] И.Т. Овчинников, Э.В. Яншин. ФТТ 25, 7, 2196 (1983).
- [4] A. Ennouri, M. Tapiero, J.P. Vols, J.P. Zielinger, J.Y. Moisan, J.C. Launay. J. Appl. Phys. 74, 4, 2180 (1993).
- [5] В.Н. Астратов, А.В. Ильинский, В.А. Киселев, М.Б. Мельников. ФТТ 26, 3, 743 (1984).
- [6] В.Н. Астратов, А.В. Ильинский, М.Б. Мельников. ФТТ 25, 10, 3042 (1983).
- [7] В.В. Брыксин, Л.И. Коровин, В.И. Марахонов. ЖТФ 53, 6, 1133 (1983).
- [8] М. Ламперт, П. Марк. Инжекционные токи в твердых телах. Мир, М. (1973). 416 с.
- [9] К. Као, В. Хуанг. Перенос электронов в твердых телах. Мир, М. (1984). 219 с.
- [10] В.И. Архипов, А.И. Руденко, А.М. Андриеш, М.С. Иову, С.Д. Шутов. Нестационарные инжекционные токи в твердых телах. Штиинца, Кишинев (1983). 175 с.
- [11] Р. Смит. Полупроводники. Мир, М. (1982). 560 с.
- [12] Аморфные полупроводники / Под ред. М. Бродского. Мир, М. (1982). 420 с.
- [13] R.E. Aldrich, S.I. Hou, M.L. Marvill. J. Appl. Phys. 42, 493 (1971).