Исследование октаэдрических кубических и тригональных примесных центров ионов Yb³⁺ в кристаллах KMgF₃ и KZnF₃ методами оптической спектроскопии

© Б.Н. Казаков, А.М. Леушин, Г.М. Сафиуллин, В.Ф. Беспалов

Казанский государственный университет, 420008 Казань, Россия

(Поступила в Редакцию 7 апреля 1998 г.)

В сложных многоцентровых спектрах люминесценции и возбуждения кристаллов $KMgF_3$ и $KZnF_3$, активированных ионами Yb^{3+} , выделены группы линий, соответствующие октаэдрическим кубическим и тригональным примесным центрам. Из интерпретации спектров найдены потенциалы кристаллических полей, которые хорошо согласуются с потенциалами аналогичных центров в ранее изученном кристалле $CsGaF_3:Yb^{3+}$.

1. Спектры люминесценции примесных центров кубической и тригональной симметрии, образованных внедрением ионов Yb³⁺ в октаэдрические позиции двухзарядных катионов кристаллов KMgF₃ и KZnF₃, впервые изучались в [1]. В этой работе из анализа экспериментальной штарковской структуры мультиплетов ${}^{2}F_{5/2}$, ${}^{2}F_{7/2}$ и *g*-факторов нижних крамерсовых дублетов ионов Yb³⁺ были определены параметры кристаллических полей (КП). Изучая аналогичные примесные центры (ПЦ) методами ЭПР и оптической спектроскопии в более рыхлом, но также кубическом кристалле CsGaF₃ [2] и интерпретируя результаты в рамках теории КП [3], мы обнаружили, что потенциал КП в этом кристалле существенно отличается от потенциалов работы [1]. Некоторые из параметров КП не совпадают и по знаку, и по величине, причем эти различия не удается объяснить изменениями постоянной кристаллической решетки при переходе от матриц KMgF₃ и KZnF₃ к матрице CsGaF₃.

Далее мы обратили внимание на то, что экспериментальные схемы уровней энергии в работе [1] не полны: в них отсутствуют верхние штарковские уровни возбужденных мультиплетов ${}^{2}F_{5/2}$ ионов Yb³⁺. Кроме того, интерпретация спектральных линий кубического ПЦ неверна. В частности, одна из наблюдавшихся при азотной температуре линий приписана спектральному переходу с возбужденного уровня мультиплета ${}^{2}F_{5/2}$ (отстоящего от нижнего уровня этого мультиплета примерно на 1000 сm⁻¹) на уровень основного мультиплета ${}^{2}F_{7/2}$. Очевидно, что такой переход маловероятен при азотной температуре.

В связи с этим, используя современные экспериментальные и теоретические методы анализа многоцентровых спектров, мы предприняли более тщательные исследования спектров люминесценции и возбуждения октаэдрических кубических и тригональных ПЩ ионов Yb³⁺ в кристаллах KMgF₃ и KZnF₃. В результате этого исследования была получена более полная по сравнению с [1] экспериментальная информация, на основе которой для обоих типов ПЩ определены параметры соответствующих КП, согласующиеся с потенциалами КП аналогичных ПЦ в кристалле CsCaF₃.

2. Оптические спектры регистрировались с помощью спектрометра, описанного в работах [2,4]. Поскольку ионы Yb^{3+} возбуждаются только резонансно, спектры люминесценции и возбуждения регистрировались стробоскопическим методом. Разделение спектральных линий по типам ПЦ осуществлялось модуляционно-фазовым методом [4].

Сложные спектры люминесценции, наблюдаемые в ближней ИК-области в кристаллах КМgF3 и КZnF3 при температуре жидкого азота и гелия, представлены на рис. 1, a и 2, a соответственно. Эти спектры аналогичны спектрам люминесценции кубических (центры типа aI) и тригональных (центры типа **aII**) ПЦ в изоструктурной матрице CsCaF₃ [2]. Модуляционно-фазовым методом выделены спектральные линии кубических (рис. 1, d, (2, d) и тригональных (рис. (1, c, 2, c)) ПЦ. Это позволило построить эмпирические схемы штарковских уровней основного мультиплета ²F_{7/2} изучаемых ПЦ и интерпретировать наблюдаемые спектральные линии как переходы с нижнего состояния возбужденного мультиплета ²*F*_{5/2} на соответствующие уровни энергии мультиплета ${}^{2}F_{7/2}$ (см. вставки на рис. 1, *с* и *d*). Как видно из этой интерпретации, понижение точечной симметрии до группы C_{3v} при переходе от кубического к тригональному ПЦ приводит к незначительному расщеплению спектральных линий кубического ПЦ. Так, линия 1 расщепляется на линии 6 и 10; линия 2 — на линии 7, 8, 11, 12; линия 3 — на линии 9 и 13 (рис. 1 и 2). Из этого экспериментального факта можно сделать следующие выводы. Во-первых, при переходе от ПЦ типа aI к типу аII тригональное искажение кубческого КП незначительно. Этот вывод подтверждается и слабой анизотропией *g*-факторов [1,5]. Во-вторых, люминесцирующий уровень и первый возбужденный штарковский уровень основного мультиплета ${}^{2}F_{7/2}$ кубических ПЦ иона Yb³⁺ являются квартетами.

С помощью спектров люминесценции (рис. 1 и 2) удалось построить полную схему энергетических уров-

Рис. 1. Спектры люминесценции кристалла $KMgF_3: Yb^{3+}$ (*a*, *b*); модуляционно-фазовым методом выделены спектральные линии преимущественно октаэдрических тригональных (*c*) и кубических (*d*) примесных центров ионов Yb^{3+} . Здесь и далее номер линий соответствует номеру перехода между уровнями энергии, которому они соотнесены. Звездочкой помечены номера спектральных линий, интерпретированные в [1] как линии октаэдрического кубического примесного центра.

Рис. 2. Спектры люминесценции кристалла $KZnF_3: Yb^{3+}$ (*a*, *b*); модуляционно-фазовым методом выделены спектральные линии преимущественно октаэдрических тригональных (*c*) и кубических (*d*) примесных центров ионов Yb^{3+} .

Рис. 3. Спектры возбуждения кристалла $KMgF_3:Yb^{3+}(a)$; модуляционно-фазовым методом выделены спектральные линии преимущественно октаэдрических тригональных примесных центров ионов $Yb^{3+}(b)$.

ней только основных мультиплетов изучаемых ПЦ. Для определения структуры возбужденных мультиплетов этих ПЦ необходимы спектры поглощения исследуемых кристаллов. Однако из-за малой концентрации примесных ионов Yb^{3+} спектры поглощения в них зарегистрировать не удалось. Поэтому мы воспользовались спектрами возбуждения кристаллов, в которых в отличие от спектров поглощения модуляцинно-фазовым методом оказалось возможным выделить спектральные линии октаэдрических кубических и тригональных ПЦ ионов Yb^{3+} (рис. 3, 4).

Из сопоставления спектров люминесценции (рис. 1, 2) и возбуждения (рис. 3, 4) определены излучательные и поглощательные переходы, происходящие между одними и теми же уровнями энергии ПЦ. Для кубического ПЦ это линии 3, а для тригонального ПЦ — линии 9 и 13 (рис. 1–4). Спектральная линия 5 (рис. 3, a, 4, a) соответствует переходу из основного состояния на верхний уровень возбужденного мультиплета ${}^2F_{5/2}$

кубического, а линия 14 — тригонального ПЦ иона Yb³⁺ (рис. 3, *b*, 4, *b*).

Экспериментальные значения уровней энергии и измеренных в [1,5] *g*-факторов представлены в табл. 1.

3. Для интерпретации экспериментальных оптических и ЭПР-спектров, обусловленных переходами между состояниями терма ${}^{2}F$ конфигурации $4f^{13}$, составлялась матрица энергии, включающая спин-орбитальное взаимодействие иона Yb³⁺ и его взаимодействие с кристаллическим и внешним магнитным полями. Потенциалы КП записывались стандартным образом через гармонические полиномы V_{k}^{q} [6]. Декартовы координаты 4f-дырки для кубических ПЦ были отнесены к кубическим осям кристалла. Для тригональных ПЦ ось *z* используемой системы координат совмещалась с осью симметрии ПЦ, а две другие оси ориентировались так, чтобы один из лигандов ближайшего октаэдрического окружения располагался в квадрате -x0z плоскости z0x.

	Свойства симметрии	KMgF	3	KZnF ₃								
J	и <i>g</i> -фактор уровней энергии	Эксперимент	Теория	Эксперимент	Теория							
1	2	3	4	5	6							
Кубический примесный центр типа al												
5/2	$^{2}\Gamma_{7}^{-}$	11 179	11 176	11 145	11 145							
	$^{2}\Gamma_{8}^{-}$	10 409	10 409	10403	10 401							
7/2	$^{1}\Gamma_{7}^{-}$	1100	1103	1084	1082							
	$^{1}\Gamma_{8}^{-}$	433	433	443	442							
	Γ_6^{-}	0	0	0	0							
	$g_{\Gamma_6^-}$	-2.584 [5]	-2.667	-2.582 [1]	-2.667							
Тригональный примесный центр типа аII												
5/2	${}^5\Gamma_4$	11 131	11 133	11118	11 119							
	$^{2}\Gamma_{56}$	10 4 2 1	10418	10412	10412							
	${}^{4}\Gamma_{4}$	10376	10374	10 368	10 366							
7/2	${}^{3}\Gamma_{4}$	1062	1058	1044	1041							
	$^{1}\Gamma_{56}$	402	401	374	373							
	$^{2}\Gamma_{4}$	383	383	366	366							
	${}^{1}\Gamma_{4}$	0	0	0	0							
	$g_{\parallel^1\Gamma_4}$	-1.844 [5]	-1.844	-1.82[1]	-1.824							
	$g_{\perp^1\Gamma_4}$	-2.896 [5]	-2.928	-2.90 [1]	-2.931							

Таблица 1. Уровни энергии (в cm⁻¹) и g-факторы примесных центров ионов Yb³⁺ в кристаллах KMgF₃ и KZnF₃

Таблица 2. Параметры кристаллических полей и спин-орбитального взаимодействия (в сm⁻¹) октаэдрических примесных центров иона Yb³⁺ в кристаллах KMgF₃, KZnF₃ и CaCaF₃

Основа	Кубический примесный центр типа al			Тригональный примесный центр типа а П						
	ξ	B_4	B_6	ξ	B_{2}^{0}	B_4^0	B_4^3	B_6^0	B_{6}^{3}	B_{6}^{6}
KMgF ₃ [1]		311	9		40	-185	-6050	-10	-90	30
$KZnF_3$ [1]		318	8		35	-188	-6200	-9	-70	20
KMgF ₃ [7]					-63	-176	-5568	42	-246	389
KMgF ₃	2900	334	4	2903	-278	-221	-5450	-42	-220	490
KZnF ₃	2897	325	7	2905	-282	-218	-5351	-50	-246	454
CsCaF ₃	2905	293	-2	2906	-232	-203	-5004	-34	-112	352

Примечание. Знаки параметров B_4^3 и B_6^3 , вычисленных с учетом деформации кристаллической решетки в работе [7], изменены на противоположные в соответствии с нашим выбором осей примесного центра типа **all**. Отличие параметров КП от соответствующих значений работы [3] для кристалла CsCaF₃ связано с тем, что благодаря улучшению сходимости вариационной процедуры мы достигли более точного теоретического описания экспериментальных величин.

Параметры КП и спин-орбитального взаимодействия ξ , наилучшим образом удовлетворяющие экспериментальным схемам уровней энергии и *g*-факторам, находились посредством процедуры, описанной в [3]. Полученные теоретические значения уровней энергии и *g*-факторов вместе со свойствами симметрии волновых функций представлены в табл. 1. О качестве описания экспериментальных штарковских схем уровней энергии можно судить по тому, что стандартное среднеквадратичное отклонение σ для всех четырех типов ПЩ не превышало 3 сm⁻¹. Теоретические значения параметров КП и спин-орбитального взаимодействия представлены в табл. 2. Там же для сравнения приведены значения параметров КП для кристаллов KMgF₃ и KZnF₃, полученные в работе [1], и для матрицы CsCaF₃, изоморфной исследуемым основам.

Наши потенциалы КП (табл. 2) примесных центров ионов Yb³⁺ во всех трех основах хорошо согласуются друг с другом и следуют общей тенденции параметров КП уменьшаться с ростом постоянной кристаллической решетки. Незначительные отклонения от этой тенденции обнаруживаются для параметров B_2^0 , B_6^0 , B_6^3 , которые слегка увеличиваются по абсолютному значению при переходе от матрицы KMgF₃ к матрице KZnF₃.

Рис. 4. Спектры возбуждения кристалла $KZnF_3:Yb^{3+}(a)$; модуляционно-фазовым методом выделены спектральные линии преимущественно октаэдрических тригональных примесных центров ионов $Yb^{3+}(b)$.

Как видно из табл. 2, наши потенциалы КП заметно отличаются от потенциалов работы [1], особенно параметры B_6^0 и B_6^6 . Знаки параметров в работе [1] такие же, как у нас, за исключением параметра B_2^0 . Однако отрицательный знак параметра B_2^0 подтвердил микроскопический расчет, выполненный в работе [7]. Полученные авторами этой работы значения параметров КП неплохо согласуются с нашими эмпирическими параметрами. Исключение составляет лишь параметр B_2^0 , значение которого, согласно результатам этого расчета, должно быть несколько меньшим, чем у нас.

Обращает на себя внимание также тот факт, что наши теоретические значения *g*-факторов тригональных ПЦ типа **aII** значительно лучше согласуются с экспериментальными значениями, чем в работе [1]. Так, максимальное отклонение экспериментальных значений *g*-факторов от теоретических значений у нас составляет 0.031 (табл. 2), в то время как в [1] оно равно 0.15.

Таким образом, получены достаточно надежные параметры кристаллического поля октаэдрических кубических и тригональных ПЦ ионов Yb³⁺ для ряда ку-

бических кристаллов типа перовскита. Эти параметры КП могут быть использованы для расшифровки спектров аналогичных ПЦ других редкоземельных ионов во фторидных матрицах со структурой перовскита.

Список литературы

- A.A. Antipin, A.V. Vinokurov, M.P. Davydova, A.L. Stolov, A.A. Fedii. Phys. Stat. Sol. (b) 81, *1*, 287 (1977).
- [2] V.F. Bespalov, M.L. Falin, B.N. Kazakov, A.M. Leushin, I.R. Ibragimov, G.M. Safiullin. Appl. Magn. Res. 11, 1, 125 (1996).
- [3] В.Ф. Беспалов, Б.Н. Казаков, А.М. Леушин, Г.М. Сафиуллин. ФТТ 39, 6, 1030 (1997).
- [4] Б.Н. Казаков, А.В. Михеев, Г.М. Сафиуллин, Н.К. Соловаров. Опт. и спектр. 79, 3, 426 (1995).
- [5] M.M. Abraham, C.B. Finch, J.L. Kolopus, J.T. Lewis. Phys. Rev. B3, 9, 2855 (1971).
- [6] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). 672 с.
- [7] M.L. Falin, M.V. Eremin, M.M. Zaripov, I.R. Ibragimov, M.P. Rodionova. J. Phys.: Condens. Matter. 2, 20, 4613 (1990).