Перекрытие локализованных орбиталей и зоны изоляторов под давлением

© В.Г. Барьяхтар*, Е.В. Зароченцев, Е.П. Троицкая, Ю.В. Еремейченкова

* Институт магнетизма Академии наук Украины, 252142 Киев, Украина Донецкий физико-технический институт Академии наук Украины, 340114 Донецк, Украина

(Поступила в Редакцию 8 января 1998 г.)

Предлагается реализация нового, основанного на кластерном разложении по группам атомов, метода расчета энергетических спектров сильно сжатых изоляторов. Зависимости от сажтия спектров как зоны проводимости, так и валентных зон однозначно определяются только величинами интегралов перекрытия орбиталей пары изолированных атомов. Интегралы перекрытия и определяемые ими матрицы рассчитаны численно для кристаллов инертных газов, анализируются их свойства и величины при различных постоянных решетки. На примере неона проведены и обсуждаются численные расчеты зон сжатого кристалла в различных предлагаемых моделях.

Современные теоретические исследования свойств изоляторов под давлением ведутся в двух направлениях. В первом, квантово-химическом (см., например, [1] для кристаллов инертных газов), рассматривается отдельный атом в кристалле и рассчитывается полная энергия кристалла. Второе направление посвящено расчету зонной структуры. Сюда относятся расчеты в рамках теории функционала плотности [2–4], метода функций Грина [5,6], а также методов использующих muffit-tin (МТ) приближение (ППВ, ККР, ЛМТО и т.д.) [7,8]. Общей чертой вышеперечисленных методов является использование специфических приближений для кристаллического потенциала, применимость которых к сжатым кристаллам неясна.

Чтобы избежать неконтролируемых приближений, для расчета зон под давлением нужно выполнить несколько условий: 1) для расчета энергетического спектра занятых состояний могут быть использованы методы, опирающиеся на базисы локализованных орбиталей (ЛО), а для расчета зон проводимости наиболее приемлем модифицированный [9–11] метод ОПВ [12]; 2) в методе ОПВ состояния заполненных зон необходимо описывать функциями Ваннье кристалла; 3) необходима достаточно точная ортогонализация базисных локализованных орбиталей друг к другу и к ОПВ.

Второе и третье требования в [9–11] были выполнены приближенно — в первом порядке по интегралам перекрытия (ИП)

$$S^{\rm lm}_{\alpha\beta} = \langle \mathbf{l}\alpha | \mathbf{m}\beta \rangle \tag{1}$$

атомных орбиталей $\varphi_{\alpha}(\mathbf{r} - \mathbf{l}) = |\mathbf{l}\alpha\rangle$. Валентные зоны рассчитывались в [9] довольно грубо. Хотя нужно заметить, что их зависимость от давления [9–11], повидимому, воспроизведена верно. Это связано в первую очередь с тем, что в [9–11] была построена теория без подгоночных параметров и без традиционных приближений (X_{α} -приближение, приближение локальных псевдопотенциалов и т.д.). В рамках этой

теории был предсказан переход изолятор-металл при $\Delta V/V_0 = 0.77 \pm 0.02.$

Дальнейшим развитием теории, удовлетворяющим вышеперечисленным положениям, является применение точной ортогонализации по Левдину [13–15] базисных ЛО и кластерного разложения (СЕ) [14–16]. Необходимость применения кластерного разложения (вместо первого порядка по ИП) вызвана тем, что при больших сжатиях ИП становятся достаточно большими. Даже в самом нижнем порядке СЕ содержится суммирование определенной подпоследовательности ряда по ИП [16,17] и тем самым снимается ограничение $|S| \ll 1$, являющееся основным в теории [9–11,18].

В настоящей работе мы ограничимся только рассмотрением идеальных кристаллов инертных газов (КИГ) при больших сжатиях. В КИГ был предсказан, обнаружен и исследован переход изоляторметалл (металлизация), а также структурные фазовые переходы [19–21]. Наиболее доступным для эксперимента оказался Хе. Металлизация Хе происходит в ГПУ-фазе при 1.5 Mbar (молярный объем $\nu_{\mu} = 10.2 \text{ сm}^3/\text{mol})$ [20]. Согласно [21], Хе переходит в металлическое состояние также в ГПУ-структуре при 1.32 Mbar ($\nu_{\mu} = 10.5 \text{ сm}^3/\text{mol}$).

Для расчета зон проводимости диэлектрика под давлением в настоящей работе предлагается метод СЕОРW. Однако в отличие от [9–11] функции Ваннье занятых состояний аппроксимируются линейными комбинациями ортогонализованных по Левдину [13] атомных орбиталей с применением кластерного разложения для их вычисления.

Основная идея настоящей работы заключается в том, что эффективный потенциал, необходимый для расчета зонных и термодинамических характеристик, определяется только интегралами перекрытия S орбиталей изолированного атома. Мы исследуем также поведение S и зон с уменьшением межатомного расстояния d (на примере КИГ).

1. Базис и кластерное разложение

Начнем с рассмотрения заполненных состояний в кристалле [16,17]. Для системы невзаимодействующих атомов естественным набором одноэлектронных волновых функций являются функции заполненных хартрифоковских состояний электронов в атоме $|l\alpha\rangle$. Здесь I пребегает все узлы (ячейки) кристалла от единицы до N. Номер орбитали α меняется от единицы до Z/2 (Z — число электронов в атоме кристалла; для простоты рассматриваем только моноатомные кристаллы), т.е. α — это фактически набор nl главного и орбитального квантовых чисел.

Введем атомные орбитали $|l\alpha\rangle_{CE}$, ортогонализованные друг другу по Левдину [13], и матрицы \mathcal{P} и *P*, которые понадобятся нам для дальнейшего рассмотрения,

$$|\mathbf{l}\alpha\rangle_{\rm CE} = \sum_{\mathbf{m}\beta} (T^{-1/2})^{\rm ml}_{\beta\alpha} |\mathbf{m}\beta\rangle = |\mathbf{l}\alpha\rangle - \sum_{\mathbf{m}\beta} \mathcal{P}^{\rm ml}_{\beta\alpha} |\mathbf{m}\beta\rangle,$$
$$\mathcal{P} = I - T^{-1/2}, \quad P = I - T^{-1} \tag{2}$$

(через *P* выражается одночастичная матрица плотности кристалла). Метрическая матрица $T_{\beta\alpha}^{ml}$, по определению, равна

$$T_{\beta\alpha}^{\mathbf{nl}} = \begin{cases} \langle \mathbf{l}\alpha | \mathbf{m}\beta \rangle, & \mathbf{l} \neq \mathbf{m}, \\ \\ \delta_{\mathbf{lm}}\delta_{\alpha\beta}, & \mathbf{l} = \mathbf{m}, \end{cases} \qquad T = I + S, \ S = S^+.$$
(3)

Матрица *T* определена в пространстве атомных орбиталей, центрированных на узлах решетки [14,15,22], *I* — единичная матрица.

Для нахождения матриц \mathcal{P} и P целесообразно использовать кластерное разложение. Такое разложение для матрицы плотности (т.е. для P) было предложено в [14] (см. также [15,22]), а для матрицы \mathcal{P} — в [16,17]. Смысл СЕ удобно пояснить на примере нескольких его самых нижних порядков (подробности общей теории см. в [16,17]). Первый порядок для величины A содержит двухчастичные кластеры (2*C*-приближение)

$$A^{(2)} = \sum_{\mathbf{l} < \mathbf{m}} A[\mathbf{l}, \mathbf{m}], \qquad (4)$$

где *A*[**I**, **m**] — двухчастичный кластер. Каждое слагаемое в (4) точно учитывает перекрытие орбиталей внутри соответствующего двухчастичного кластера. Один набор таких кластеров перебирает весь кристалл. Второй порядок (приближение трехчастичных кластеров) имеет вид

$$A^{(3)} = \sum_{\mathbf{l} < \mathbf{m} < \mathbf{n}} \left\{ A[\mathbf{l}, \mathbf{m}, \mathbf{n}] - A[\mathbf{l}, \mathbf{m}] - A[\mathbf{m}, \mathbf{n}] - A[\mathbf{l}, \mathbf{n}] \right\}.$$
(5)

Каждое из слагаемых (5) содержит точный вклад парного перекрытия внутри трехчастичного кластера за вычетом всевозможных точных вкладов двухчастичных кластеров, содержащихся в данном трехчастичном. Аналогичную структуру имеют члены всех последующих порядков СЕ, так что

$$A = A^{(2)} + A^{(3)} + \ldots + A^{(N)}$$

причем все слагаемые, кроме $A^{(N)}A[\mathbf{l}_1...\mathbf{l}_N]$, взаимно уничтожатся и останется $A = A^{(N)}$ (см. подробнее [14,22]). Преимущество СЕ состоит в том, что его можно оборвать при малом числе членов, избежав тем самым вычислений с матрицей *T* порядка $L \times L$ (L — размер кристалла).

В данной работе мы ограничимся приближением двухчастичных кластеров. В интересующем нас случае расчета зонной структуры

$$A = \begin{cases} \mathcal{P}; & A[\mathbf{m}, \mathbf{n}] = I - T[\mathbf{m}, \mathbf{n}]^{-1/2}, \\ \mathcal{P}; & A[\mathbf{m}, \mathbf{n}] = I - T[\mathbf{m}, \mathbf{n}]^{-1}, \end{cases}$$
(6)

$$T[\mathbf{m},\mathbf{n}]_{\alpha\beta}^{\mathbf{l}'} = \begin{cases} S_{\alpha\beta}^{\mathbf{l}'}; & \mathbf{l} & \mathbf{u} & \mathbf{l}'[\mathbf{m},\mathbf{n}], \\ \delta_{\mathbf{l}\mathbf{l}'}\delta_{\alpha\beta}; & \mathbf{l} & \mathbf{u}/\mathbf{u}\mathbf{J}\mathbf{u} & \mathbf{l}'[\mathbf{m},\mathbf{n}]. \end{cases}$$
(7)

Таким образом, при использовании приближения двучастичных кластеров задача ортогонализации по Левдину атомных орбиталей всего кристалла сводится к аналогичной задаче для соответствующих двухатомных кластеров.

2. Зонная структура

Одночастичное уравнение Шредингера (уравнение Хартри–Фока) зонного электрона с блоховской функцией $\psi_{\mathbf{k}}$ есть

$$\begin{bmatrix} \hat{T} + \sum_{\mathbf{l}} V_{ne}^{\mathbf{l}} + 2\int \frac{\rho(\mathbf{r}'|\mathbf{r}')d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} \end{bmatrix} \Psi_{\mathbf{k}\nu}(\mathbf{r}) - \int \frac{\rho(\mathbf{r}'|\mathbf{r}')\psi_{\mathbf{k}}(\mathbf{r}')d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} = \varepsilon_{\mathbf{k}}\psi_{\mathbf{k}\nu}.$$
(8)

В методе Хартри–Фока матрица плотности $\rho(\mathbf{r}|\mathbf{r}')$ в (8) сама зависит от искомых функций $\psi_{\mathbf{k}}v$. Однако обычно (см. [12]) все слагаемые в левой части, кроме оператора кинетической энергии $\hat{T} = (\hbar^2/2m)\nabla^2$, обозначаются как потенциал V^1 , действующий одинаково на любой электрон и удовлетворяющий основному допущению зонных расчетов,

$$V(\mathbf{r}) = \sum_{\mathbf{l}} V(\mathbf{r} - \mathbf{l}).$$
(9)

Этот подход используется в методе CELO [16], обсуждаемом далее. Более гибкой является схема, в которой одоэлектронный потенциал $V(\mathbf{r})$ строится различным образом для занятых (валентных зон) и свободных (зоны проводимости) состояний. Рассмотрим именно эту ситуацию, считая, что в изоляторе занятые состояния описываются в базисе локализованных орбиталей $|\mathbf{l}\alpha\rangle_{CE}$, а зону проводимости можно описать в рамках метода ОПВ.

Волновая функция заполненных состояний электронов в кристалле в одночастичном подходе есть слэтеровский детерминант [15] со столбцами (строками) из одноэлектронных функций: блоховских или Ваннье. Координатная часть этого детерминанта образуется в нашем случае из блоховских функций валентных электронов $|\mathbf{k}v\rangle$ (\mathbf{k} волновой вектор, v — номер заполненной зоны), построенных по обычным [12] правилам из ортогонального базиса $|\mathbf{l}\alpha\rangle_{CE}$, т.е.

$$|\mathbf{k}v\rangle = N^{-1/2} \sum_{\mathbf{l}\alpha} C_{\alpha v} \exp(i\mathbf{k}\mathbf{l}) |\mathbf{l}\alpha\rangle_{\rm CE},$$
 (10)

где $C_{\alpha v}$ — вариационные параметры, подлежащие определению.

Гамильтониан Н задачи есть

$$H = \sum_{i} h_i + \sum_{i < j} v_C(\mathbf{r}_i - \mathbf{r}_j), \quad h_i = T_i + V_i, \quad (11)$$

где T_i и V_i — оператор кинетической энергии и одноэлектронный потенциал, действующий на *i*-й электрон со стороны ядер, $v_C(r) = e^2/r$.

Проведя ряд очевидных преобразований, приводим секулярное уравнение для нахождения энергии $E_{\mathbf{k}\nu}$ и волновых функций $C_{\alpha\nu}$ валентных зон к следующему виду:

$$\sum_{\beta} \left[V_{\alpha\beta}(\mathbf{k}; \{C\}) + \delta_{\alpha\beta}(\varepsilon_{\beta} - E_{\mathbf{k}}v) \right] C_{\beta\nu} = 0; \qquad (12)$$

это уравнение при $V_{\alpha\beta} = 0$ дает уровни энергии изолированного атома ε_{β} . В (12) одноэлектронный потенциал $V_{\alpha\beta}$ обращается в нуль при $S^{lm}_{\alpha\beta} = 0$. Система уравнений (12) одинаково пригодна для любого метода, базис которого представляет собой набор локализованных орбиталей. Она пригодна для подходов Хартри–Фока (HF), дырочных зон или LCAO (см. [23]). В подходе СЕНF потенциал $V_{\alpha\beta}$ имеет вид

$$V_{\alpha\beta}(\mathbf{k};C) = \varepsilon_{\alpha}S_{\alpha\beta}(\mathbf{k}) + N^{-1}\sum_{\mathbf{l},\mathbf{n}} \exp\left[i\mathbf{k}(\mathbf{l}-\mathbf{n})\right]$$
$$\times \left\{\sum_{\mathbf{m}\neq\mathbf{n}} \langle \mathbf{l}\alpha | v_{a}^{\mathbf{m}} | \mathbf{n}\beta \rangle + (V^{(1)}[\mathcal{P}])_{\alpha\beta}^{\mathbf{l}\mathbf{n}} + (V^{(2)}[\mathcal{P};C])_{\alpha\beta}^{\mathbf{l}\mathbf{n}}\right\},$$
(13)

где

$$S_{\alpha\beta}(\mathbf{k}) = \sum_{\mathbf{h}\neq\mathbf{0}} S^{\mathbf{h}\mathbf{0}}_{\alpha\beta} \exp[i\mathbf{k}\mathbf{h}], \qquad (14)$$

 v_a — самосогласованный потенциал нейтрального атома, $S_{\alpha\beta}^{h0}$ дается формулой (1). Слагаемые кристаллического потенциала $V_{\alpha\beta}(\mathbf{k}; C)$ в (12) приведены в Приложении. При вычислении дырочных зон [18] нужно положить в (13) $V^{(2)} = 0$, а в методах СЕLО и LCAO — кроме этого часть слагаемых из $V^{(1)}$ (см. Приложение). Потенциал $V^{(1)}$ является функцией от матрицы \mathcal{P} и обращается в нуль при $\mathcal{P} = 0$ (или S = 0). Он имеет вид

$$V^{(1)}[\mathcal{P}] = V_h^{(1)}[\mathcal{P}] + V_{ee}^{(1)}[\mathcal{P}].$$
 (15)

Выражения для $V_h^{(1)}$ и $V_{ee}^{(1)}$ приведены в Приложении. Потенциал $V^{(2)}$ зависит от перекрытия базисных функций непосредственно через \mathcal{P} и неявно через вариационные параметры $C_{\alpha\nu}$ (см. Приложение). Потенциал $V^{(2)}$ является прямым следствием нелинейности уравнений Хартри–Фока.

Теперь рассмотрим зоны проводимости и кратко опишем метод CEOPW [16,17]. Пробные функции зон проводимости $|kc\rangle$ строятся из ортогонализованных волн

$$|\mathbf{k}\rangle_{\text{CEOPW}} = \left(1 - \sum_{\mathbf{k}'\nu} |\mathbf{k}'\nu\rangle\langle\mathbf{k}'\nu|\right) |\mathbf{k}\rangle$$
(16)

как

$$|\mathbf{k}c\rangle = \sum_{\mathbf{g}} a_{\mathbf{g}}(k)|\mathbf{k} + \mathbf{g}\rangle_{\text{CEOPW}},$$
 (17)

где $a_{\mathbf{g}}(\mathbf{k})$ — вариационные параметры, $|\mathbf{k}v\rangle$ — функции заполненных зон (10).

Секулярное уравнение для нахождения спектра $E_{\mathbf{k}c}$ и функций $a_{\mathbf{g}}(\mathbf{k})$ имеет вид

$$\sum_{\mathbf{g}'} \left\{ \left[\frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{g})^2 - E_{\mathbf{k}c} \right] \delta_{\mathbf{g}\mathbf{g}'} + V_C(\mathbf{g}' - \mathbf{g}) + V_{\mathrm{ex}}(\mathbf{k} + \mathbf{g}', \mathbf{k} + \mathbf{g}) + V_{\mathrm{PK}}(\mathbf{k} + \mathbf{g}'; \mathbf{k} + \mathbf{g}) \right\} a_{\mathbf{g}'}(\mathbf{k}) = 0. \quad (18)$$

Здесь V_C , V_{ex} , V_{PK} — формфакторы кулоновского, обменного потенциалов и потенциала Филлипса–Клеймана. Выражения для этих величин в кластерном подходе приведены и подробно обсуждаются в [16]. В настоящей работе мы лишь обсудим их зависимость от ИП.

Коэффициенты уравнения (18) зависят от ИП через так называемый решеточный Фурье-образ матриц \mathcal{P} и P. В общем виде

$$A_{\alpha\beta}(\mathbf{k}) = \sum_{\mathbf{h}} A^{\mathbf{h}\mathbf{0}}_{\alpha\beta} \exp(i\mathbf{k}\mathbf{h}), \qquad (19)$$

 $A = S, \mathcal{P}, P, \alpha, \beta = 1s, 2s, 2p_x, 2p_y, 2p_z$ для Ne, обсуждаемого далее. Матрицы $A_{\alpha\beta}(k)$ можно выразить через базовые ИП $A_{\alpha\beta}^{h0}$ ($\mathbf{h} = \sqrt{2}(0, 0, 1)$)

$$A^{\mathbf{h0}}_{\alpha\beta} \left\{ \begin{matrix} S_{\alpha\beta} \\ \mathcal{P}_{\alpha\beta} \\ P_{\alpha\beta} \end{matrix} \right\} = A_{\sigma}, A_{\pi}, A_{ns,2p}, A_{ns,ms},$$

где $n = 1, 2, A_{\sigma} = A_{2p_z, 2p_z}, A_{\pi} = A_{2p_x, 2p_x}, A_{ns, 2p} = -A_{2p, ns}.$ Величины $A_{\alpha\beta}(\mathbf{k})$ (19) в приближении ближайших соседей равны:

1) s-s-перекрытие

$$A_{ns,ms}(\mathbf{k}) = \gamma^{ss}(\mathbf{k}) A_{ns,ms}, \qquad (20a)$$

2) *s*-*p*-перекрытие, $n = 1, 2, \alpha = x, y, z$,

$$A_{ns,2p_{\alpha}}(\mathbf{k}) = -A_{2p_{\alpha},ns}(\mathbf{k}) = \gamma_{\alpha}^{sp}(\mathbf{k})A_{ns,2p}, \qquad (20b)$$

Физика твердого тела, 1998, том 40, № 8

$$A_{2p_{\alpha},2p_{\beta}}(\mathbf{k}) = A_{2p_{\beta},2p_{\alpha}}(\mathbf{k}) = \gamma_{\alpha\beta}^{\sigma}(\mathbf{k})A_{\sigma} + \gamma_{\alpha\beta}^{\pi}(\mathbf{k})A_{\pi}.$$
 (20c)

Величины $\gamma^{\alpha\beta}(\mathbf{k})$ зависят только от структуры кристалла и орбитального квантового числа

$$\gamma^{\alpha\beta}(\mathbf{k}) = \sum_{\mathbf{h}} n(\alpha\beta) \exp(i\mathbf{k}\mathbf{h}).$$
(21)

Здесь $n(\alpha\beta) = 1, -1, 0$ в зависимости от конкретного **h**. Мы не будем приводить конкретных выражений для $\gamma^{\alpha\beta}(\mathbf{k})$.

3. Перекрытие атомных орбиталей

Из (13) (см. также Приложение) следует, что кристаллический потенциал $V_{\alpha\beta}(\mathbf{k}; \{C\})$, действующий на валентный электрон, определяется перекрытием электронных волновых функций атомов кристалла. Кластерное разложение (в любом порядке) оперирует только парными ИП, через которые вводится одночастичный базис (2). Кулоновский и обменный потенциалы в (13) тоже зависят от перекрытия орбиталей соседних атомов и также могут быть записаны через $S_{\alpha\beta}^{\rm Im}$ [8,22]. Что касается потенциала, действующего на избыточный электрон (в зоне проводимости), то зависимость всех его слагаемых от $S_{\alpha\beta}^{\rm Im}$ явная [16]. В этом разделе мы рассмотрим поведение $S_{\alpha\beta}^{\rm Im}$, а также матриц \mathcal{P} и P в

Таблица 1. Зоны проводимости сжатого неона вблизи фундаментальной щели в различных моделях

Точка ЗБ	Модель	$\Delta V/V_0$					
		0.0	0.6	0.7	0.75	0.8	
Γ_1	1	2.55	9.31	14.09	18.86	24.66	
	2	2.56	9.49	14.34	18.49	25.02	
	3	2.56	9.55	14.42	18.55	25.07	
	4	2.54	7.31	14.61	18.69	25.53	
	5	2.54	8.30	16.38	18.96	25.44	
L_n	1	8.35	17.57	20.99	21.46	-5.35	
	2	8.16	17.80	20.44	17.15	-5.82	
	3	8.13	16.50	15.02	7.11	-9.50	
	4	8.13	16.89	16.81	11.77	1.33	
	5	8.13	17.32	19.24	17.36	8.22	
X_n	1	9.25	15.94	15.47	3.36	-8.90	
	2	9.25	16.06	13.48	1.08	-9.02	
	3	9.25	16.04	13.01	0.49	-9.33	
	4	9.26	16.47	19.55	21.29	14.37	
	5	9.26	16.32	19.16	21.10	21.16	
2 <i>р</i> -уровень, расчет			-23.13 [26]				
2 <i>р</i> -уровень, эксперимент			-21.5 [28]				

Примечание. Энергии даны в еV. Γ_1 , L_n и X_n — самые нижние точки зоны проводимости в моделях: I — без ортогонализации атомных функций, 2 — с их ортогонализацией в первом порядке по S_{σ} , 3 — в первом порядке по S_{σ} и S_{π} , 4 — учтены все S в первом порядке, 5 — СЕОРW.

Рис. 1. Зависимость интегралов перекрытия ближайших соседей Ne от сжатия $u = \Delta V/V_0$ и расстояния d $(d_0 = 5.96230 \text{ a.u.} [24])$. Цифрами обозначены ИП орбиталей: $1 - 2p2p(\sigma), 2 - 2s2p, 3 - 2p2p(\pi), 4 - 2s2s, 5 - 1s2p, 6 - 1s2s, 7 - 1s1s$. Здесь и далее стрелкой обозначена расчетная величина сжатия металлизации [1], а числа у делений нижней шкалы абсцисс — значения сжатия u, соответствующие данному d.

зависимости от межатомного расстояния (что имитирует внешнее давление в кубическом кристалле).

На рис. 1,2 показана зависимость базового (ось z направлена на ближайшего соседа) интеграла S от межатомного расстояния d (или сжатия $u = \Delta V/V_0$, V — объем) для Ne и Kr (имеющих 10 и 36 электронов на один атом). Для расчетов использовались атомные функции из таблиц Клименти–Роэтти [26].

Общим свойством $\ln |S|$ является, как и ожидалось, рост с уменьшением d. Линейность $\ln |S| \sim (d_0 - d)$ выдерживается довольно хорошо, особенно для высокоэнергетических состояний и не слишком больших сжатий. Структура S(d) в неоне (рис. 1) чрезвычайно проста, тогда как в криптоне (рис. 2) зависимость $\ln |S|$ при участии внутренних оболочек нелинейна и даже немонотонна. Отклонение кривой $\ln |S| = f(d)$ от прямой обусловлено тем, что при значительных сжатиях

Puc. 2. Наибольшие интегралы перекрытия *S* в Kr ($d_0 = 7.547080$ a.u. [25]). *a* — перекрытие *s*- и *p*-орбиталей: $I = 4p4p(\sigma)$, 2 = 4s4p, $3 = 4p4p(\pi)$, 4 = 4s4s, 5 = 3s4p, $6 = 3p4p(\pi)$, 7 = 2s4p, 8 = 3s4s, 9 = 1s4p, 10 = 2s4s, 11 = 1s4s, 12 = 3s3p, 13 = 3s2p, $14 = 3p3p(\sigma)$, 15 = 2s3p, $16 = 3p3p(\pi)$, 17 = 2s4p, 18 = 1s2p, 19 = 2s2s, 20 = 1s2s; *b* — перекрытие *d*-орбиталей: $I = 3d_{z^2}4p$, $2 = 3d_{xz}4p$, $3 = 3d_{z^2}4s$, $4 = 3d_{z^2}3z^2$, $5 = 3d_{z^2}3p$, $6 = 3d_{zz}3d_{zz}$, $7 = 3d_{xz}3p$, $8 = 3d_{xy}3d_{xy}$, $9 = 3d_{z^2}2p$, $10 = 3d_{zz}2p$.

начинает сказываться немонотонность, а также наличием нулей радиальных атомных функций. Этим же объясняется и немонотонность самых больших S при d в районе металлизации ($u \sim 0.7-0.8$). Другой особенностью является существенно большая скорость роста кривой $\ln |S|$ при перекрытии d-состояний (рис. 2, b).

Из рис. З видно, что Ne выпадает из ряда КИГ. Для него отклонения δ имеют величину ~ 1%, тогда как для Ar, Kr и Xe эти величины группируются около 10%. Сжатия перехода изолятор-металл для четырех КИГ лежат в интервале $u_c = 0.7-0.8$ (на рис. 3 приведены расчетные значения u_c из работы [1], для Ne u_c совпадает с нашим [9–11,27]).

Зависимости $S_{\alpha\beta}(\mathbf{k})$ (19) приведены на рис. 4. Аналогичный вид имеют кривые для $\mathcal{P}_{\alpha\beta}(\mathbf{k})$ и $P_{\alpha\beta}(\mathbf{k})$. Видно (рис. 4, *a*), что все $S_{\alpha\beta}(\mathbf{k})$ ($\alpha, \beta = 1s, 2s, 2p_x, 2p_y, 2p_z$) имеют одинаковый порядок величины, хотя $S_{\alpha\beta}^{\mathbf{h0}}$ различаются между собой на порядок. Это происходит за счет умножения $S_{\alpha\beta}^{\mathbf{h0}}$ на γ (рис. 4), но вклад S_{σ} в $S_{\alpha\beta}(\mathbf{k})$ в 2–4 раза больше, чем вклад S_{π} (рис. 4, *b*). Этим объясняется тот факт, что добавление S_{π} существенно

Рис. 3. Отличие $\delta = |(\mathcal{P} - 0.5S)/S| \cdot 100\%$ наибольших элементов $\mathcal{P}_{np,np}^{(\sigma)}$ матрицы \mathcal{P} от их первого порядка по интегралам перекрытия в зависимости от межатомного расстояния d и сжатия u для Ne (1), Ar (2), Kr (3) и Xe (4).

Рис. 4. Решеточные Фурье-образы ИП ближайших соседей в ГЦК-неоне на линии Γ -*L*. Сжатие u = 0.6. a — максимальные отличные от нуля ИП ($\alpha \neq \beta = x, y, z$): $1 - S_{2s;2s}, 2 - S_{2s;2p_{\alpha}} = -S_{2p_{\alpha};2s}, 3 - S_{2p_{\alpha};2p_{\beta}} = S_{2p_{\beta};2p_{\alpha}}, 4 - S_{2p_{\alpha};2p_{\alpha}}; b$ — вклады S_{σ} и S_{π} в $S_{2p_{x};2p_{x}}$ (1 и 2) и в $S_{2p_{x};2p_{y}}$ (3 и 4).

не влияет на результат для зон проводимости (табл. 1). В то же время добавление остальных ИП (s-s- и s-p-перекрытия) меняет зонную структуру.

Среди всех базовых ИП наибольшим для всех криокристаллов является интеграл S_{σ} . В [9,11] только он принимался во внимание. Однако малость остальных ИП относительно S_{σ} еще не позволяет делать вывод о том, что ими можно пренебречь. Величины $\gamma^{\alpha\beta}(\mathbf{k})$ (20) могут менять величины вкладов от $S_{\alpha\beta}$. Например, S_{π} заметно меньше S_{σ} , однако $\gamma^{\pi}(\mathbf{k})$ в 2 раза больше γ^{σ} в точке Γ , так что вклады этих интегралов в $S(\mathbf{k})$ оказываются одного порядка. Такая же ситуация и на линии ΓX , так что учет S_{π} заметно "сглаживает" ход кривой $S_{2p_{\gamma},2p_{\gamma}}(\mathbf{k})$ на этой линии и т.д. По этой причине мы рассчитали зоны с разными наборами S (табл. 1).

В предыдущих разделах мы показали, как учесть весь ряд по *S*, введя матрицы \mathcal{P} и *P*. Покажем, как количественно проявляется кластерное разложение на примере неона. Хотя в неоне недиагональные блоки, например матрицы $P[\mathbf{0}I]_{\alpha\beta}^{\mathbf{0}I}$ равны $S_{\alpha\beta}^{\mathbf{0}I}$ (u = 0.75) с хорошей точностью ($\sim 1\%$) (рис. 3), вклады диагональных блоков оказываются $\sim 25\%$. По этой причине кривые $P_{\alpha\beta}(\mathbf{k})$ сдвинуты относительно кривой $S_{\alpha\beta}(\mathbf{k})$ на постоянную величину, равную

$$P_{lphaeta}(\mathbf{k}) - S_{lphaeta}(\mathbf{k}) = \sum_{\mathbf{h}} P[\mathbf{h0}]^{\mathbf{00}}_{lphaeta}$$

независимо от k.

Рис. 5. Зависимость наибольших элементов недиагональных (1, 2) и диагональных (4, 5) блоков матрицы \mathcal{P} в Хе от соответствующих *S*. Кривая 3 — зависимость от *S* первого порядка разложения по степеням *S* элементов недиагональных блоков матрицы \mathcal{P} . $1 - |\mathcal{P}_{05pl5p}^{(\sigma)}|, 2 - |\mathcal{P}_{05sl5s}|, 4 - |\mathcal{P}_{15pl5p}^{(\sigma)}|, 5 - |\mathcal{P}_{15sl5s}|$. Стрелками обозначены значения *S* в точке металлизации [1].

Зона	Точка ЗБ	Модель		$\Delta V/V_0$				
				0.0	0.6	0.7	0.75	0.8
$E_{\mathbf{k} u}$	Γ_{15}	a b c		-23.00 -22.99 -20.43	-22.55 -22.52 -14.90	-22.24 -22.26 -7.70	-22.01 -22.14 3.64	-21.78 -22.22
$E_{\mathbf{k}c}$	Γ_1	2	a b c	2.56 2.56 2.56	9.54 9.54 9.49	14.38 14.37 14.34	18.51 18.51 18.49	25.04 25.04
		5	a b c	2.54 2.54 2.54	8.79 8.78 8.30	12.86 11.04 16.38	20.93 19.21 18.96	25.46 25.46
	L_n	2	a b c	8.16 8.16 7.63	17.81 17.81 12.82	20.78 19.78 -9.71	18.63 16.45 -88.89	2.58 0.81
		5	a b c	8.13 8.13 7.60	17.38 17.11 12.25	19.54 18.44 -4.44	18.17 15.53 -58.80	10.43 4.24
	X_n	2	a b c	9.25 9.25 9.25	16.01 16.10 15.01	10.61 16.28 4.16	-3.37 8.25 -40.18	13.50 1.35
		5	a b c	9.26 9.26 9.26	16.31 16.33 16.31	19.15 19.18 3.83	21.08 21.12 -44.80	23.56 23.63
$E(L_n)-E(\Gamma_{15})$		2 5	с с	28.06 28.03	27.72 27.15	-2.01 3.26	-92.53 -62.64	
$\overline{E(X_n)-E(\Gamma_{15})}$		2 5	с с	29.68 29.69	29.91 31.21	4.16 11.53	$-43.82 \\ -48.44$	

Таблица 2. Зонная структура сжатого неона вблизи фундаментальной щели в различных моделях

Примечание. Энергии даны в eV. Цифрами 2 и 5 обозначены модели для расчета зон проводимости $E_{\mathbf{k}c}$ (см. табл. 1), буквами — модели для расчета валентных зон $E_{\mathbf{k}v}$: a - LCAO [12], b - CELO [16], c - [18] (дырочные зоны).

На рис. 5 показаны кластерные вклады, т.е. отличия элементов матрицы \mathcal{P} от соответствующих величин *S*. Качественным отличием матриц \mathcal{P} и *P* от *S* является неравенство нулю их диагональных элементов (рис. 5). Видно, что для неона эти отличия (как уже отмечалось) незначительны вплоть до давлений перехода, но для других, более тяжелых, кристаллов они важны.

4. Обсуждение результатов

Из построенной теории зонной структуры (см. разделы 2, 3 и [16]) следует, что зоны изолятора определяются только величинами $S^{lm}_{\alpha\beta}$ (1). Любые воздействия, не меняющие структуры волновых функций электрона в атоме, действуют на кристалл только через изменение расстояния l-m и перекрытие атомных орбиталей. В этом смысле величины $S^{lm}_{\alpha\beta}$ являются единственными управляющими параметрами теории. Из них часто существенны только $S^{lm}_{\alpha\beta}$ для ближайших соседей (например, в Ne) и только для верхних валентных зон. Таким образом, набор величин $S^{lm}_{\alpha\beta}$ однозначно определяет все свойства

изоляторов: и электронные спектры (через матрицы \mathcal{P} и P), и адиабатический потенциал (через матрицу P [15,29]). Задача о расчете свойства изоляторов разбивается на два этапа: вычисление набора $S^{\text{Im}}_{\alpha\beta}$ и расчет при заданных $S^{\text{Im}}_{\alpha\beta}$ спектров, термодинамики и кинетики.

В табл. 1 приведены результаты расчетов нижней зоны проводимости неона. Расчеты выполнены методом ОПВ в различных моделях. Во всех моделях в качестве энергий занятых состояний использовались энергии изолированных атомов [26]. Тем самым исключено влияние приближений для валентной зоны.

В табл. 2 приведены верхние валентные и нижайшие зоны проводимости сжатого неона в различных моделях для валентных зон. Для расчета зон проводимости, как и в табл. 1, использовался метод ОПВ, а заполненные зоны рассчитывались нами в приближениях LCAO [12], CELO [16] и как дырочные (см. раздел 2 и Приложение).

Главный результат, следующий из табл. 1 и 2, заключается в том, что металлизация под давлением наступает в результате обращения в нуль непрямой щели $E(X_n) - E(\Gamma_{15})$ либо $E(L_n) - E(\Gamma_{15})$. Для несжато-

го кристалла наличие или отсутствие ортогонализации атомных функций друг к другу не играет роли. Различия между моделями начинаются лишь с u = 0.6. Наиболее чувствительными к перекрытию атомных функций являются зоны в точках X и L.

Табл. 2 демонстрирует влияние различных моделей для валентных зон проводимости. Повышение энергии любой из валентных зон понижает значение энергии в нижайшей зоне проводимости в соответствующей точке ЗБ, и наоборот. Это наиболее ясно видно в модели c, где сильное повышение 2p-зон (при неизменных 1s- и 2s-зонах) приводит к понижению энергий зон проводимости в точках L и X, значительно уменьшая давление металлизации.

В нижней части табл. 2 приведены величины непрямых щелей. Переход изолятор-металл наступает в точке *L* при сжатии ~ 0.69 или ~ 0.71 в моделях *2* и 5 соответственно. Незначительное смягчение давления перехода по сравнению с результатами [9–11] обусловлено главным образом уточнением E_{kv} в потенциале Филипса-Клеймана. Учет всех порядков по *S* в неоне не столь существен. Таким образом, сжатие перехода изолятор-металл в Ne было предсказано в [9–11] довольно точно. Оно соответствовало давлению 5 ± 2 Mbar [9]. Как следует из [30], уже достигнуто давление ~ 6 Mbar, что довольно близко к давлению перехода изолятор-металл в Ne.

Зонная структура при различных сжатиях и металлизация учитывались в [4] для Ar, Kr и в [3] для Xe (см. также [2]). Во всех работах использовалась теория функционала плотности в приближении локальной плотности для расчета четырех верхних валентных зон и нижних зон проводимости. Остальные заполненные состояния считались неизменными по сравнению с состояниями изолированного атома и включались в остов. Было получено схлопывание непрямых щелей. Однако приближение локальной плотности всегда дает заниженное значение зонной щели [2].

Наконец, кратко остановимся на обобщении кластерного подхода. Возникновение в теории только парных $S^{\rm Im}_{\alpha\beta}$ является следствием одночастичности базиса. В системах, где важны двухэлектронные состояния, существенную роль будут играть трехчастичные кластеры и соответствующие интегралы перекрытия $S^{\rm Imn}_{\alpha\beta\gamma}$.

В заключение авторы выражают благодарность И.В. Абаренкову за постоянный интерес к работе и ценные дискуссии.

Настоящая работа выполнена частично благодаря гранту N U9B000 Международного научного фонда.

Приложение

Самосогла
сованный потенциал $v^{\mathbf{m}}_a$ нейтрального атома
 \mathbf{m} есть

$$v_a^{\mathbf{m}} = v_{en}^{\mathbf{m}} + v_C^{\mathbf{m}} + v_{ex}^{\mathbf{m}}$$

Физика твердого тела, 1998, том 40, № 8

где

$$v_{en}^{\mathbf{m}} = v_{en}(\mathbf{r} - \mathbf{m}) = Ze^{2}/|\mathbf{r} - \mathbf{m}|,$$

$$v_{C}^{\mathbf{m}} = \mathbf{v}_{C}(\mathbf{r} - \mathbf{m}) = 2\sum_{\gamma} \langle \mathbf{m}\gamma | v_{C}(\mathbf{r} - \mathbf{r}') | \mathbf{m}\gamma \rangle,$$

$$v_{ex}^{\mathbf{m}} | f \rangle = -\sum_{\gamma} \langle \mathbf{m}\gamma | v_{C}(\mathbf{r} - \mathbf{r}') | f \rangle | \mathbf{m}\gamma \rangle.$$
(II1)

Потенциалы $V^{(1)}$ и $V^{(2)}$ в (13) имеют довольно много слагаемых, для записи которых целесообразно применить графическое представление. Введем элементы, из которых построим эффективный потенциал $V_{\alpha\beta}(\mathbf{k}; \{C\})$ системы (12),

$$-\sum_{m\beta} |m\beta\rangle \mathscr{F}_{\beta\alpha}^{mb} = -\frac{b\alpha}{c}, -\sum_{m\beta} \mathscr{F}_{\alpha\beta}^{bm} < m\beta| = \frac{b\alpha}{c},$$
$$< b\alpha|h|m\beta\rangle = \frac{b\alpha}{c}, \frac{m\beta}{c},$$
$$m\beta n\gamma$$

<
$$\log m\beta |v_c| n\gamma p\delta > =$$
, (II2)

где $h = \frac{\hbar^2}{2m}\Delta + \sum_{\mathbf{m}} v_{en}^{\mathbf{m}}.$

Рассмотрим потенциал $V^{(1)}$ из (13). Прежде всего заметим, что, в то время как $V_h^{(1)}$ в (15) имеет простой вид

$$V_h^{(1)}[\mathcal{P}] = -\{\mathcal{P}h + h\mathcal{P}\} + \mathcal{P}h\mathcal{P},\tag{II3}$$

или графически

$$\begin{bmatrix} \mathsf{V}_{h}^{(1)} \end{bmatrix}_{\alpha\beta}^{\mathbf{ln}} = \frac{\mathbf{loc} \ h \ \mathbf{n}\beta}{\cdots} + \mathbf{loc} \ h \ \mathbf{n}\beta + \mathbf{loc} \ h \ \mathbf{n}\beta + \mathbf{loc} \ \mathbf{n}\beta \qquad (\Pi 4)$$

 $(\mathcal{P} \text{ и } h - \text{матрицы})$, кулоновский потенциал $V_{ee}^{(1)}$ является полиномом четвертой степени по матрице \mathcal{P} . Представим его в виде

$$\left[V_{ee}^{(1)}\right]_{\alpha\beta}^{\ln} = \sum_{\mathbf{m}\gamma} \left[2U_{\alpha\gamma\gamma\beta}^{\mathrm{lmmn}} - U_{\alpha\gamma\beta\gamma}^{\mathrm{lmmm}}\right]. \tag{\Pi5}$$

Для U справедливо графическое представление

Здесь

$$U_{xyzs} \rightarrow \begin{cases} U_{\alpha\gamma\gamma\beta}^{\text{lmmn}} & -\text{ в кулоновском слагаемом,} \\ U_{\alpha\gamma\beta\gamma}^{\text{lmmm}} & -\text{ в обменном слагаемом.} \end{cases}$$
 (П7)

Выписать аналитическое выражение для $V^{(1)}$ не представляет труда.

Потенциал (Пб) соответствует расчету валентных зон по методу Хартри-Фока. Приближение CELO [16] получится, если в (Пб) оставить только диаграммы 3, 4 и 5. Учет только диаграмм 1 и 4 дает потенциал, используемый для дырочных зон [18].

Второе слагаемое в (13) представляет собой поправку на самосогласование и имеет следующий вид:

$$\{ V^{(2)}[\mathcal{P}; \{C\}] \}_{\mathbf{l}\alpha;\mathbf{n}\beta} = N^{-1} \sum_{\mathbf{q}} \sum_{\mathbf{mj}} \sum_{\gamma\sigma} \exp\left[-i\mathbf{q}(\mathbf{m}-\mathbf{j})\right]$$
$$\times \left[\sum_{\nu}^{n_l} C^*_{\delta\nu}(\mathbf{q}) C_{\gamma\nu}(\mathbf{q}) - \delta_{\delta\gamma} \right] \left[2\tilde{U}^{\mathrm{lmjn}}_{\alpha\delta\gamma\beta} - \tilde{U}^{\mathrm{lmnj}}_{\alpha\delta\beta\gamma} \right], \quad (\Pi 8)$$

причем

а слагаемое $U_{\alpha\delta\gamma\beta}^{\text{Imjn}}$ в (П9) справа дано диаграммами (П6), индекс *v* нумерует заполненные зоны.

Список литературы

- [1] А.В. Тулуб, В.Ф. Братцев, М.В. Пак. Опт. и спектр. **74**, *3*, 464 (1993).
- [2] Y. Li, J.B. Krieger, M.R. Norman, G.J. Iafrate. Phys. Rev. B44, 19, 10437 (1991).
- [3] Shindo Koichi, Nishikawa Astushi. J. Phys. Soc. Jap. 60, 10, 3579 (1991).
- [4] I. Kwon, L.A. Collins, J.D. Kress. Phys. Rev. B52, 21, 15165 (1995).
- [5] C. Helio, S.G. Louie. Phys. Rev. B46, 6688 (1992).
- [6] R.W. Godby, R.J. Needs. Phys. Rev. Lett. 62, 10, 1169 (1989).
- [7] A.K. McMahan. Phys. Rev. **B33**, *8*, 5344 (1986).
- [8] Ю.Х. Векилов, Л.З. Кимлат. ФТВД 9, 84 (1982)
- [9] Е.В. Зароченцев, Е.П. Троицкая. ФТТ 27, 11, 1212 (1985).
- [10] Е.В. Зароченцев, Е.П. Троицкая. ФТТ 30, 8, 2367 (1988).
- [11] E.V. Zarochentsev, K.B. Tolpygo, E.P. Troitskaya. Phys. Stat. Sol. (b) **127**, *1*, 175 (1985).
- [12] Дж. Займан. Вычисление блоховских функций. Мир, М. (1973). 158 с.
- [13] P.O. Lövdin. Theoretical investigation into some properties of ionic crystals. Thesis. Uppsala (1948). 126 p.
- [14] И.В. Абаренков, И.М. Антонова. ФТТ 20, 565 (1978).
- [15] И.В. Абаренков, И.М. Антонова, В.Г. Барьяхтар, В.Л. Булатов, Е.В. Зароченцев. Методы вычислительной техники в теории твердого тела. Электронная структура идеальных и дефектных кристаллов. Наук. думка, Киев (1991). 450 с.

- [16] Ю.В. Еремейченкова, Е.В. Зароченцев, Е.П. Троицкая. ТМФ 106, 3, 498 (1996).
- [17] Е.П. Троицкая, Ю.В. Еремейченкова, Е.В. Зароченцев. ФТВД 4, 3–4, 7(1994).
- [18] В.К. Срибная, К.Б. Толпыго. ФНТ 6, 3, 366 (1980).
- [19] A.P. Jephcoat, H.K. Mao, L.M. Finger. D.F. Cox, R.J. Hemley, C.S. Zha. Phys. Rev. Lett. 59, 2, 2670 (1987).
- [20] R.Reichlin, K.I. Brister, A.K. McMahan, M. Ross, S. Martin, V.K. Vohra, A.L. Ruoff. Phys. Rev. Lett. 62, 6, 669 (1989).
- [21] K.A. Goettel, J.H. Eggert, J.F. Silvera, W.C. Moss. Phys. Rev. Lett. 62, 6, 665 (1989).
- [22] I.V. Abarenkov, I.M. Antonova. Phys. Stat. Sol. 38, 2, 783 (1970).
- [23] Е.Р. Троицкая, Е.В. Зароченцев, Ю.В. Еремейченкова. ФТВД 6, 3, 31 (1996).
- [24] D.N. Batchelder, D.L. Losee, R.O. Simmons. Phys. Rev. 162, 3, 767 (1967).
- [25] J.Jr. Skalyo, Y. Endoh. Phys. Rev. B9, 4, 1797 (1974).
- [26] E. Clementi, C. Roetti. Atom. Data Nucl. Data Tabl. 14, 3–4, 177 (1974).
- [27] Е.П. Троицкая. Автореф. докт. дис. Киев (1987). 27 с.
- [28] В.В. Соболев. Зоны и экситоны криокристаллов. Штиинца, Кишинев (1986). 204 с.
- [29] Е.Р. Троицкая, Ю.В. Еремейченкова, Е.В. Зароченцев. ФТВД 5, 4, 5 (1995).
- [30] N.E. Christensen, A.L. Ruoff, C.O. Rodridez. Phys. Rev. B52, 13, 9121 (1995).