Форма неоднородно уширенных резонансных линий, обусловленная нелинейными вкладами

© М.Д. Глинчук, С.Н. Нохрин

Институт проблем материаловедения Академии наук Украины, 252680 Киев, Украина

(Поступила в Редакцию 19 августа 1997 г. В окончательной редакции 5 января 1998 г.)

Развита теория формы неоднородно уширенных резонансных линий в случае, когда сдвиги резонансных частот спин-пакетов определяются нелинейными (в частности, квадратичными) вкладами случайных полей. Показано, что форма линии $I(\omega)$ описывается узкой δ -образной кривой с широкими крыльями. Однородное уширение приводит к уменьшению интенсивности $I_{max}(\omega)$ и уширению линии. Проведено сравнение рассчитанных и измеренных форм линий ЯМР ⁹³Nb в PbMg_{1/3}Nb_{2/3}O₃ (PMN) при T = 430 K и KTa_{0.988}Nb_{0.012}O₃ (KTN). Теория хорошо описывает наблюдаемые аномалии форм резонансных линий. Обсуждены особенности структуры рассмотренных разупорядоченных сегнетоэлектриков PMN и KTN.

Исследование особенностей формы линий в спектрах ЭПР, ЯМР привлекает пристальное внимание в течение многих лет. Это обусловлено тем, что анализ формы линий позволяет получать ценную информацию о распределении случайных полей в решетках, концентрации дефектов, их статических и динамических характеристиках, о спин-фононном взаимодействии и т. д. (см., например, [1]).

Статические и динамические (в шкале рассматриваемого метода измерений) характеристики системы получаются обычно на основе анализа соответственно неоднородного и однородного вклада в форму и ширину линий. В частности, в разупорядоченных системах линии магнитных резонансов обычно неоднородно уширены, так что их формы повторяет функцию распределения случайных полей в решетке. Изучение этой функции является особенно важным для физики фазовых переходов и построения фазовой диаграммы таких систем [2,3].

Количественная информация об источниках случайных полей, определяющих форму неоднородно уширенных линий, получается обычно на основе сравнения рассчитанной и измеренной формы линии. Расчет может быть проведен в рамках статистической теории формы линий с учетом как линейных, так и нелинейных вкладов случайных полей. Оказалось, что наличие нелинейных и линейных вкладов существенно изменяет форму резонансных линий (см. [4,5]) по сравнению с формой, обусловленной лишь линейными вкладами (см. [1,6]). В то время как в обоих вышеупомянутых случаях получено точное аналитическое решение, для формы неоднородно уширенной резонансной линии предложен лишь приближенный метод расчета формы в рамках статистической теории второго порядка [7] в случае, когда имеются лишь квадратичные вклады, а линейные отсутствуют. Отметим, что статистическая теория второго порядка приводит к форме линий в виде сложных интегралов, которые могут быть решены лишь численно, так что форма линии не представляется аналитически. Вместе с тем случай отсутствия линейных вкладов весьма распространен в

радиоспектроскопии. Например, в спектрах ЯМР ядер с большим квадрупольным моментом и спином $I \ge 1$ (например, Nb, Ta), где ширина и форма линий определяются в основном взаимодействием квадрупольного момента ядра с градиентами случайных электрических полей, форма линий переходов $+1/2 \rightarrow -1/2$ определяется квадратичными вкладами градиентов электрических полей.

В настоящей работе предлагается теория формы резонансных линий для случая, когда квадратичные вклады играют определяющую роль в неоднородном уширении линий.

Проведено сравнение рассчитанных и измеренных ранее спектров ЯМР ⁹³Nb в виртуальном сегнетоэлектрике КТаO₃, допированном Nb, и релаксорном сегнетоэлектрике $PbMg_{1/3}Nb_{2/3}O_3$.

1. Теория

Интенсивность неоднородно уширенной линии, как известно [1], пропорциональна числу конфигураций источников локального возмущения, приводящих к рассматриваемому сдвигу частоты $\Delta \omega$. В зависимости от величин спина и характеристик парамагнитного центра, таких как спин-фононные, спин-электрические константы, квадрупольные моменты ядер, сдвиг частоты может определяться случайными деформационными, магнитными, электрическими полями и их градиентами, обусловленными вышеупомянутыми источниками локального возмущения. Такими источниками обычно являются примеси, дефекты структуры (например, вакансии), антиузельные ионы и др. Особенно много источников случайных полей и их градиентов в разупорядоченных магнитных и сегнетоэлектрических системах, характерными чертами которых являются беспорядок в замещении катионов решетки, наличие случайных магнитных либо электрических диполей. Отметим, что электрические диполи возникают обычно из-за сдвигов ионов из положений равновесия в высокосимметричной фазе. С учетом линейных

Рис. 1. Теоретическая форма неоднородно уширенных резонансных линий. Параметр нелинейности $b^*\Delta$: a - 1.05, b - 1.4, c - 1.75; параметр однородного уширения $1/\tau\Delta$: l - 0.1, 2 - 0.2, 3 - 0.4. Точками показана гауссова форма линии в первом порядке статистической теории.

и квадратичных вкладов вышеупомянутых полей и их градиентов сдвиг частоты резонансного перехода можно записать в виде

$$\Delta \omega = a\varepsilon + b\varepsilon^2,\tag{1}$$

где константа *а* безразмерна, а константа *b* имеет размерность обратной частоты.

В случае когда существенны лишь линейные вклады $(b = 0, a \neq 0)$, форма линий $f_1(\omega)$ рассчитывается в статистической теории первого порядка и приводит к гауссовой, хольтцмарковской, лорентцевой формам линий в зависимости от скорости спадания случайных полей в пространстве.

Задача нахождения формы линий при одновременном учете как линейных, так и нелинейных вкладов вплоть до *m*-й степени в рамках статистической теории была рассмотрена нами ранее [4,5] и привела к следующему выражению:

$$f_m(\omega) = \sum_{k=1}^m \frac{f_1(\omega_k)}{|\varphi'(\omega_k)|},\tag{2}$$

где ω_k — действительные корни алгебраического уравнения

$$\varphi(\varepsilon) = \omega - a\varepsilon - b\varepsilon^2 - c\varepsilon^3 - \ldots - f\varepsilon^m = 0.$$
 (3)

Укажем, что выражение (2) может быть получено и в рамках общей теории вероятностей как распределение вероятности для функции случайной величины [8].

В интересующем нас случае отсутствия линейных вкладов ($a = 0, b \neq 0$ в выражении (1)) форма линии на основе (2), (3) запишется в виде

$$f_2(\omega) = \frac{1}{2|\sqrt{b\omega}|} \left[f_1\left(\sqrt{\frac{\omega}{b}}\right) + f_1\left(-\sqrt{\frac{\omega}{b}}\right) \right].$$
(4)

Из выражения (4) видно, что в то время как функция формы, рассчитанная в линейном приближении $f_1(\omega)$, имеет максимум при $\omega = 0$ (т.е. при резонансной частоте, с которой совмещено начало отсчета частот), $f_2(\omega) \to \infty$ при $\omega \to 0$. Эта расходимость может быть снята учетом вклада однородного уширения, которое всегда присутствует в реальных системах, путем замены $\omega \to \omega + i/\tau$, где $1/\tau$ — полуширина на полувысоте лорентциана, характеризующего вклад однородного уширения. Указанная процедура полностью соответствует свертке формы линии неоднородного и однородного уширения в виде лорентциана с учетом того, что в (4) следует оставить лишь действительную часть, так что (4) переписывается в виде

$$f_{2}(\omega) = \frac{1}{2\sqrt{b\left(\omega^{2} + \frac{1}{\tau^{2}}\right)^{1/2}}}$$
$$\times \operatorname{Re}\left[f_{1}\left(\sqrt{\frac{\omega + \frac{i}{\tau}}{b}}\right) + f_{1}\left(-\sqrt{\frac{\omega + \frac{i}{\tau}}{b}}\right)\right]. (5)$$

В дальнейшем предположим, что $f_1(\omega)$ имеет часто встречающуюся в реальных материалах гауссову форму $f_1(\omega) = \frac{1}{\Delta\sqrt{2\pi}} \exp\left(-\frac{\omega^2}{2\Delta^2}\right)$, где Δ — полуширина. В этом случае (5) переписывается следующим образом:

$$f_{2}(\omega) = \frac{1}{\Delta \sqrt{2\pi b \left(\omega^{2} + \frac{1}{\tau^{2}}\right)^{1/2}}} \times \exp\left(-\frac{\omega}{2b\Delta^{2}}\right) \cos\frac{1}{2b\tau\Delta^{2}}.$$
 (6)

Из формулы (6) можно ожидать, что с ростом безразмерных параметров нелинейности $b\Delta$ и вклада однородного уширения $(\Delta \tau)^{-1}$ максимальная интенсивность линии $f_{2 \max} = f_2(0)$ будет уменьшаться, а полуширина на полувысоте увеличиваться из-за условия нормировки $\int f_2(\omega)d\omega = 1$. Укажем, что выражение, определяющее величину полуширины на полувысоте $\omega_{1.2}$, может быть непосредственно получено из (6) и представлено в виде

$$\frac{\omega_{1/2}}{b\Delta^2} - 2\ln 2 + \frac{1}{2}\ln(1 + \tau^2 \omega_{1/2}^2) = 0.$$
 (7)

Рис. 1 (продолжение).

Результаты численных расчетов формы линий $f_2(\omega)$ для ряда параметров $b\Delta$ и $(\Delta \tau)^{-1}$ представлены на рис. 1, *a*-*c*. Видно, что форма линий существенно отличается от гауссовой формы, соответствующей линейному приближению, а с ростом параметров $b\Delta$ и $(\Delta \tau)^{-1}$ максимальная интенсивность линии действительно падает, а ее ширина возрастает. Отметим, что при наличии нескольких механизмов однородного уширения $1/\tau = \sum_i 1/\tau_i$.

2. Обсуждение результатов, сравнение с экспериментом

Обращает на себя внимание необычная форма линий, представленных на рис. 1: узкая дельтообразная центральная часть и широкие крылья с очень малой интенсивностью при $\omega/\Delta \ge 2$. Линия полностью симметрична относительно резонансной частоты $\omega = 0$. Это связано с тем, что особая точка, обусловленная знаменателем в формуле (4), совпала с резонансной частотой $\omega = 0$ формы линейного приближения. Учет одновременно линейных и квадратичных вкладов нарушает это совпадение, как можно видеть из (2), (3), и приводит к существенно асимметричной линии не с одним, а с двумя максимумами, как показали подробные расчеты [4,5]. Таким образом, представленная на рис. 1 форма линии может рассматриваться как прямое следствие наличия квадратичных и отсутствия линейных вкладов случайных возмущений в сдвиг резонансной частоты. В эксперименте ситуация, наиболее близкая к проведенному теоретическому рассмотрению, может иметь место, например, при определенных ориентациях внешнего магнитного поля, при которых отсутствуют линейные вклады в сдвиг частоты, а также для переходов $\pm 1/2 \rightarrow 1/2$, чувствительных лишь к нелинейным вкладам случайных электрических полей и градиентов электрического поля. На рис. 2 представлено сравнение теоретически рассчитанной и наблюдаемой формы линии перехода $+1/2 \rightarrow -1/2$ спектра ЯМР ⁹³Nb в разупорядоченном сегнетоэлектрике PbMg_{1/3}Nb_{2/3}O₃. Как известно [9], ядро ⁹³Nb обладает большим квадрупольным моментом, и потому форма его резонансных линий должна быть чувствительной к разбросу градиентов электрических полей. Спин ядра 93 Nb I = 9/2, так что для всех переходов, кроме $+1/2 \rightarrow -1/2$, сдвиг частоты будет

Рис. 2. Спектр ЯМР ⁹³Nb в PbMg_{1/3}Nb_{2/3}O₃ при $B \parallel [001]$, частоте спектрометра $\nu_0 = 49$ MHz и T = 430 K. Рассчитанная форма линии показана сплошной кривой, точками — эксперимент.

обусловлен линейным взаимодействием квадрупольного момента ядра с градиентами случайных электрических полей. Для перехода $+1/2 \rightarrow -1/2$ линейный вклад в сдвиг частоты отсутствует. Он рассчитывается во втором порядке теории возмущений и потому является квадратичной функцией градиентов электрического поля (см., например, [10]), так что форма неоднородно уширенной линии ЯМР будет описываться формулой (6), где параметр $1/\tau$, характеризующий вклад однородного уширения, следует связать с величиной магнитного спинспинового взаимодействия ядер Nb. Расчет величины $1/\tau$ по обычным формулам, приведенным, например, в [11], в предположении, что в макрообластях соотношение концентрации ионов Mg и Nb в среднем соответствует отношению 1:2, привел к значению $1/\tau = 3 \, \text{kHz}$. Это позволило, используя формулу (7) для полуширины на полувысоте и величину максимальной интенсивности линии, определяемой выражением

$$f_{2\max} = f_2(0) = \frac{\cos(1/2b\tau\Delta^2)}{\Delta\sqrt{2\pi b/\tau}},$$
 (8)

вычислить величину $\Delta = 25 \text{ kHz}$ и параметр $b\Delta = 0.25$.

Из рис. 2 видно, что формула (6) при указанных значениях входящих в нее параметров достаточно хорошо описывает наблюдаемую форму линии ЯМР. Некоторая асимметрия измеренной формы линии может быть связана с малыми дополнительными к квадрупольному и спинспиновому вкладами, не учтенными в теоретическом рассмотрении. Укажем, что в случае наличия макрообластей с упорядочением типа 1:1 [12] и областей, обогащенных Nb в PMN, спектр включал бы две линии, тогда как наблюдается лишь одна линия. С другой стороны, существование областей 1:1 приводило бы к величине $1/\tau = 1 \, \text{kHz}$, тогда как из формулы (7) видно, что для наблюдаемой линии значения $1/\tau \leqslant 1.5\,\mathrm{kHz}$ приводят к физически неразумному результату $\omega_{1/2} < 0$. Таким образом, проведенное нами рассмотрение свидетельствует о наличии в PMN лишь областей типа 1:2.

Форма линии ЯМР ⁹³Nb, напоминающая представленную на рис. 1, наблюдалась в сегнетоэлектрике $KTa_{1-x}Nb_xO_3$ (KTN), x = 0.012 [13]. Авторы наблюдали сужение линии и увеличение пиковой интенсивности линии перехода $+1/2 \rightarrow -1/2$ при понижении температуры от T = 19.9 до 7.9 K. Как обсуждалось

Рис. 3. Спектр ЯМР ⁹³Nb в KTa_{0.988}Nb_{0.012}O₃ при $B \parallel [001]$, частоте спектрометра $\nu_0 = 49$ MHz при различных температурах. T (K): a - 19.9, b - 18.1, c - 7.9. Рассчитанная форма линии показана сплошной кривой, точками — эксперимент.

Рис. 3 (продолжение).

выше, такое поведение прямо следует из формулы (6) при изменении величины однородного вклада $1/\tau$ и представлено на рис. 1, *a* и 1, *b*. Если предположить, что однородное уширение определяется спин-спиновым взаимодействием Nb с окружающими ядрами ¹⁸¹Та и ³⁹K, а также реориентационным движением Nb между эквивалентными ориентациями его дипольных моментов, $1/\tau = 1/\tau_{d-d} + 1/\tau_m$ должно зависеть от температуры, так как величина $1/\tau_m$ должна уменьшаться с понижением температуры. Как показано на рис. 1, это должно привести к увеличению пиковой интенсивности и сужению линии, что качественно согласуется с наблюдавшимся изменением формы линии.

Подробное сравнение теории с экспериментом представлено на рис. З при T = 19.9 (*a*), 18.1 (*b*) и 7.9 K (*c*). Величины $1/\tau_m$ для всех температур рассчитывались по формуле Аррениуса $\frac{1}{\tau} = \frac{1}{\tau_0} \exp\left(-\frac{U}{T}\right)$ с параметрами U = 200 K, $1/\tau_0 = 7 \cdot 10^9$ Hz [14], соответствующи-

ми реориентационному движению упругого дипольного момента Nb, величина $1/\tau_{d-d} = 1.5$ kHz. Из рис. 3 видно, что формула (6) хорошо описывает наблюдаемую форму линий для всех рассмотренных температур при значениях параметров $\Delta = 4$ kHz, $b\Delta = 0.14$ с учетом определенных из приведенной выше формулы Аррениуса значений $I/\tau_m = 300$ kHz, 110 kHz и 0.1 Hz соответственно для T = 19.9, 18.1 и 7.9 K.

Авторы [13] пытались объяснить необычную форму линии ЯМР ⁹³Nb в КТN в предположении, что широкий пьедестал линии при высоких температурах $T > T_c$ обусловлен вкладом неразрешенных сателлитных переходов $(1/2 \rightarrow 3/2, 3/2 \rightarrow 5/2$ и т.д.), тогда как при $T < T_c$ этот вклад отсутствует из-за ухода сателлитов далеко от перехода $+1/2 \rightarrow -1/2$, поскольку симметрия становится ниже кубической из-за нецентрального смещения ионов Nb при $T \leq T_c \approx 10$ К. Такая модель, однако, не согласуется с сохранением интегральной интенсивности

измеренных линий при температурах $T > T_c$ и $T < T_c$. Предложенное нами объяснение необычной формы линии ЯМР ⁹³Nb в КТN не требует предположения о смещении Nb из узла при $T \approx 10$ K и учитывает лишь наличие упругого дипольного момента ионов Nb, динамика которого изучена на основе независимых экспериментов [13]. Укажем, что, поскольку параметры, характеризующие динамику упругого и электрического дипольных моментов Nb, существенно разные, представляется затруднительным обсуждать нецентральное положение Nb при $T \leq T_c$ по данным ЯМР.

Список литературы

- М.Д. Глинчук, В.Г. Грачев, М.Ф. Дейген, А.Б. Ройцин, Л.А. Суслин. Электрические эффекты в радиоспектроскопии. Наука, М. (1989). 332 с.
- [2] M.D. Glinchuk, V.A. Stephanovich. J. Phys.: Condens. Matter. 6, 3, 6317 (1994).
- [3] M.D. Glinchuk, R. Farhi. J. Phys.: Condens. Matter. 8, 9, 6985 (1996).
- [4] М.Д. Глинчук, И.В. Кондакова. ФТТ 40, 2, 340 (1998).
- [5] M.D. Glinchuk, I.V. Kondakova. J. Molec. Phys., in press.
- [6] A.U. Stoneham. Rev. Mod. Phys. 41, 1, 82 (1969).
- [7] A.U. Stoneham. Proc. Phys. Soc. 1, 2, 565 (1968).
- [8] Д. Худсон. Статистика для физиков. Мир, М. (1967). 238 с.
- [9] В.В. Лагута, М.Д. Глинчук, И.П. Быков, А.Н. Титов, Е.М. Андреев. ФТТ **32**, *10*, 3132 (1990).
- [10] M.D. Glinchuk, I.P. Bykov, V.V. Laguta. Ferroelectrics 143, 1, 39 (1993).
- [11] А. Абрагам. Ядерный магнетизм. Изд-во иностр. лит., М. (1963). 552 с.
- [12] E. Husson, L. Abello, A. Morell. Mat. Res. Bull. 25, 2, 539 (1990).
- [13] J.J. van der Klink, S. Rod, A. Chatelian. Phys. Rev. B33, 4, 2084 (1986).
- [14] Т.В. Антимирова, М.Д. Глинчук, А.П. Печеный, И.М. Смолянинов. ФТТ **32**, *1*, 208 (1990).