Электронная структура глубоких центров в LiNbO₃

© И.Ш. Ахмадуллин, В.А. Голенищев-Кутузов, С.А. Мигачев

Казанский физико-технический институт Российской академии наук, 420029 Казань, Россия

(Поступила в Редакцию 19 декабря 1997 г.)

Предложена модель фото- и термоиндуцированных процессов, происходящих в кристаллах ниобата лития, основанная на наличии структурных дефектов, образующихся из-за отклонения состава кристалла от стехиометрического. Введены в рассмотрение дефекты вида Nb_{Li} – Nb_{Li}. Рассмотрено влияние окислительновосстановительной термообработки на оптические характеристики кристаллов.

Ниобат лития (НЛ) — LiNbO₃ — является одним из наиболее широко применяемых материалов в современных твердотельных устройствах обработки и передачи оптической информации. Значительный практический интерес вызывает также существующая возможность на одном рабочем кристалле осуществить лазерную генерацию с последующим преобразованием частоты излучения. Для применений НЛ весьма важным является знание особенностей оптических свойств, исследованию которых посвящено большое количество работ [1-13]. Основное внимание в них уделялось фотоиндуцированным изменениям коэффициентов поглощения и преломления и возможности целенаправленного их изменения. В ходе исследований было установлено, что изменение оптических свойств можно регулировать термообработкой в окислительно-восстановительных условиях.

Было установлено, что при длительной экспозиции кристаллов при $T > 800 \,\mathrm{K}$ в атмосфере с дефицитом кислорода они приобретают интенсивную темную окраску в видимом и ближнем УФ-диапазонах. Последующая термообработка кристаллов в окислительных условиях (кислород или воздух) при соответствующей температуре приводила к практически полному обесцвечиванию наведенного восстановительным отжигом светопоглощения. Термические отжиги также в значительной степени изменяют характер фотоиндуцированного изменения показатели преломления.

В работе [13] исследовалось наведенное ионизирующим излучением изменение светопоглощения в НЛ. Было установлено, что в спектрах наведенного поглощения в основном присутствуют те же компоненты, что и при восстановительном отжиге.

В связи с тем, что термо- и фотоиндуцированные изменения оптических характерстик НЛ имеют весьма сложный характер, до настоящего времени существует устойчивый интерес к структурным и дефектным центрам и их роли в формировании оптических свойств НЛ.

Важной особенностью кристаллов НЛ, в существенной степени определяющей оптические свойства является то обстоятельство, что связь между ионами $O^2 - Nb^{5+}$ носит преимущественно ковалентный характер и значительно сильнее связи $O^2 - Li^+$, являющейся чисто ионной. Радиусы же ионов Li^+ и Nb^{5+} практически одинаковы. Указанное обстоятельство приводит к тому,

что состав кристалла LiNbO₃ допускает значительное отклонение от стехиометрии в сторону дефицита лития. Наиболее однородные по оптическим свойствам кристаллы имеют так называемый конгруэнтный состав, при котором расплав (Li₂O-Nb₂O₅) имеет наиболее высокую температуру кристаллизации, при этом соотношение ионных концентраций катионов [Li]/[Nb] = 0.94. Также установлено [13,14], что изменение состава в сторону стехиометрического приводит к уменьшению величины термо- и фотоиндуцированных эффектов.

Считается установленным, что отклонение от стехиометрии приводит к сильной степени разупорядочения структуры кристалла НЛ. Поэтому основной причиной термо- и фотоиндуцированных изменений поглощения света считается образование структурных дефектов замещения Nb_{Li} (antisite defect), которые являются глубокими электронными ловушками [9]. Указанные дефекты представляют собой пару ионов ниобия, расположенных вдоль оси c_3 (ось z) на расстоянии ~ 3 Å. Пары Nb_{Li}—Nb_{Nb} образуют поляроны малого радиуса при локализации одного и биполяроны Гайтлера–Лондона при локализации двух электронов.

В то же время, несмотря на имеющийся обширный экспериментальный материал, существующие модели структурных дефектов (поляроны, биполяроны) не в состоянии последовательно описать процессы термо- и фотоиндуцированного изменения оптических свойств НЛ. Целью данной работы является разработка модели, дополнительно включающей в рассмотрение новые дефекты структуры, позволяющей более адекватно описать термои фотоиндуцированные процессы в кристаллах НЛ.

1. Методика и результаты исследований

Использовались монокристаллы НЛ, выращенные методом Чохральского, состав кристаллов был близок к конгруэнтному. Образцы имели форму прямоугольных параллелепипедов размером $6 \times 4 \times 0.7$ mm с оптически обработанными гранями.

По данным ЭПР, в номинально чистых кристаллах присутствовали также и другие парамагнитные примеси, преимущественно Fe³⁺ ($\sim 3 \cdot 10^{16} \, {\rm cm^{-3}}$), Mn²⁺, Cr³⁺, Ti³⁺, ($< 10^{15} \, {\rm cm^{-3}}$).

Рис. 1. Оптический спектр поглощения кристаллов НЛ (T = 77 K), наведенный восстановительным отжигом при $T_{\text{ann}} = 720 \text{ K}$. Точки — эксперимент, сплошные линии — результат разложения на гауссовы компоненты.

Методика исследований включала серию окислительно-восстановительных отжигов образцов при различных температурах и средах, облучение кристаллов отфильтрованным при помощи светосильного монохроматора МДР-12 светом различных длин волн и измерение спектров оптического поглощения и ЭПР после каждого термического или оптического воздействия. Интенсивность излучения контролировалась при помощи прибора ИМО-2 и составляла величину порядка $1 \text{ W} \cdot \text{cm}^{-2}$. Окисление кристаллов велось в воздухе либо кислороде, восстановительный отжиг проводился в вакууме при давлении ~ 10^{-2} Torr.

Оптические спектры поглощения регистрировались на спектрофотометре СФ-46 для неполяризованного света, распространяющегося вдоль направления оптической оси (ось z) кристалла, при комнатной температуре ($T \sim 290$ K) и температуре жидкого азота (77 K). Наводимые внешними воздействиями разностные спектры анализировались с использованием ЭВМ.

Для получения исходных данных все образцы предварительно длительно ($t \sim 10$ h) отжигались в окислительных условиях при $T_{ann} = 870$ K. Все наведенные изменения отсчитывались от этих значений, поскольку при таком отжиге оптическое поглощение в видимом диапазоне минимально.

На рис. 1 приведено изменение оптической плотности для кристаллов НЛ при $T_{\rm ann} = 720$ К. В спектрах наведенного поглощения следует отметить появление оптических полос с центрами на 4.05, 3.48, 3.15, 2.49 и 1.64 eV. Появление в спектрах оптического поглощения полос 4.05, 3.15 и 2.49 eV связано с наличием ионов железа и их перезарядки Fe³⁺ \rightarrow Fe²⁺ [12]. Уже при $T_{\rm ann} = 720$ К и продолжительности отжига более 5–6 h, по данным ЭПР, ионы железа практически полностью меняют валентность, что вызывает существенное замедление роста связанных с наличием железа полос.

Повышение температуры восстановительного отжига до 870 К вызывает рост поглощения во всем наблюдаемом диапазоне (рис. 2) с образованием новых оптических полос с центрами на ~ 2.3 , 2.9, 3.3 и 4.0 eV. Для

упрощения дальнейшего анализа приведен разностный спектр для $T_{\text{ann}} = 870$ и 720 К. При такой операции убираются поглощение, относящееся к примеси Fe и полоса 3.48 eV.

Рис. 3 иллюстрирует изменения светопоглощения, наводимые в восстановленном при $T_{ann} = 720$ К образце светом различных длин волн. Видно, что свет с длинами волн 546 и 760 nm практически не вызывает изменения поглощения, в то время как облучение светом с длиной волны 365 nm (3.4 eV) приводит к заметному просветлению в полосе 3.48 eV с одновременным ростом поглощения в полосе 1.64 eV.

Изменение светопоглощения восстановленных при $T_{\rm ann} = 870 \,\mathrm{K}$ образцов НЛ при воздействии света различных длин волн имеет более сложный характер (рис. 4). Наводимые светом изменения поглощения в целом коррелируют с наводимыми термоотжигом. Более существенным является тот факт, что заметное воздействие оказывает и облучение более длинноволновым светом. Отметим, что появление фотоиндуцированного поглощения в полосе 1.64 eV сопровождается образованием десятикомпонентного сигнала ЭПР ($g_{\parallel} \approx 1.9$), принадлежащего ионам Nb⁴⁺ (4d¹).

Рис. 2. Оптический спектр поглощения кристаллов НЛ (T = 77 K), наведенный восстановительным отжигом при $T_{\text{ann}} = 870 \text{ K}$.

Рис. 3. Изменение поглощения света восстановленных при $T_{\text{ann}} = 720 \text{ K}$ образцов НЛ под действием светового облучения (77 K). $\lambda_{\text{irrad}} = 760 (1), 546 (2)$ и 365 nm (3).

Рис. 4. Изменение поглощения света восстановленных при $T_{\text{ann}} = 870 \text{ K}$ образцов НЛ под действием светового облучения (77 K). $\lambda_{\text{irrad}} = 760 (1), 546 (2)$ и 365 nm (3).

Увеличение температуры восстановительного отжига до 1000 К и более приводит к тому, что наводимые изменения перестают быть обратимыми при последующих циклах окисление-восстановление. Для исследований был взят образец НЛ, который перед упоминавшимся первичным окислительным отжигом дополнительно восстанавливался в вакууме в течение 8 h при 1150 К. Последующие условия термообработки для него были идентичными случаю восстанавливавшихся при 720 К образцов. В результате для него было отмечено заметное (~ 1.5 раза) увеличение светопоглощения в полосе 3.48 eV наряду с сохранением величины относящихся к примеси железа оптических полос поглощения.

2. Модель. Обсуждение результатов

Предлагаемая модель фото- и термоиндуцированных процессов основывается на наличии структурных дефектов, образующихся в кристаллах НЛ из-за нестехиометричности состава [9]. Результаты работ по рентгеновскому облучению кристаллов НЛ [13] позволяют утверждать, что элементы кристалла, ответственные за образование оптического поглощения в рассматриваемом нами диапазоне, присутствуют изначально даже в окисленных кристаллах.

Рентгеноструктурный анализ кристаллов НЛ, [15], показал, что состав проведенный в работе конгруэнтных кристаллов LiNbO₃ может быть охарактеризован формулой $(Li_{1-5x}Nb_{5x})Nb_{1-4x}O_3$, где x = 0.0118. Необходимость учета электронейтральности приводит нас к следующему составу: $(LiNbO_3)_{0.941}(Nb_{Li}Nb_{Nb}O_3)_{0.0118}(V_cNbO_3)_{0.0472}$.

Первая составляющая — это НЛ обычного состава, вторая представляет фрагменты, включающие так называемые antisite defects, третья включает катионные вакансии V_c . Для предлагаемой модели существенным является наличие в кристаллах около 1% ионов Nb_{Li} в соседстве с Nb_{Nb} при высокой (около 4.7% позиций катиона) концентрации V_c . Это соответствует концентрации дефектов вида Nb_{Li}–Nb_{Nb} (*b*-дефект) порядка $2 \cdot 10^{20}$ cm⁻³. Соответственно для катионных вакансий $[V_c] \sim 8 \cdot 10^{20}$ cm⁻³.

Согласно [9], процесс восстановительного отжига НЛ сопровождается потерей кислорода образцом, высвободившиеся электроны захватываются имеющимися ловушками. Кроме того, предполагается, что катионы, образовавшиеся при диссоциации поверхностных молекул LiNbO₃, диффундируют в объем кристалла и заполняют имеющиеся катионные вакансии V_c . Захват электрона из зоны проводимости на *b*-дефекте приводит к образованию малого полярона (*P*) Nb⁴⁺_{Li} – Nb⁵⁺_{Nb}, обладающего оптической полосой поглощения 1.64 eV. Соответственно захват *b*-дефектом двух электронов приводит к образованию биполярона (*B*) с широкой оптической полосой в спектрах поглощения в интервале 1.7–4 eV.

В предлагаемой нами модели для более полного описания экспериментальных фактов мы вводим в рассмотрение дополнительно дефекты, связанные с взаимодействием ионов Nb, занимающих позиции Li (Nb_{Li}–Nb_{Li}). Минимальное расстояние между позициями ионов Li в структуре LiNbO₃ составляет 3.76 Å (рис. 5) с числом ближайших соседей, равным трем. Считая распределение дефектов вида Nb_{Li} случайным, получим количество ионов Nb_{Li}, имеющих ближайшими соседями другой Nb_{Li}, равное $3 \cdot 10^{-4}$, или 0.03% от общего числа ли-

Рис. 5. Структура кристалла НЛ.

тиевых узлов. Структурные дефекты $Nb_{Li} - Nb_{Li}$ назовем дефектами *q*-типа. Их концентрация $[q] \sim 6 \cdot 10^{18} \text{ cm}^{-3}$.

В исходном (окисленном) состоянии кристаллы содержат в зависимости от степени стехиометрии определенную концентрацию структурных дефектов *b*- и *q*-типов. Концентрация свободных электронов в окисленном НЛ мала, заполнены (в малой степени) только наиболее глубокие ловушки (*q*-типа), влияние дефектов на оптические свойства минимально.

Рассмотрим процессы, происходящие при восстановительном отжиге. В первом интервале температур отжига (700-800 K) после охлаждения преобладает заполнение электронами наиболее глубоких ловушек — структурных дефектов *q*-типа, что сопровождается ростом оптического поглощения с центров на 3.48 eV (рис. 1).

Второй температурный интервал отжига (850–1000 К) характеризуется возрастающей ролью структурной перестройки кристалла, в результате которой несколько повышается концентрация структурных дефектов (*b*- и *q*-типов). Происходит заметное заполнение дефектов *q*-типа и начинается захват электронов дефектами *b*-типа, что сопровождается появлением оптического поглощения в видимом и УФ-диапазонах (рис. 2).

Повышение температуры восстановительного отжига до 1000 К и выше приводит к возрастанию дефицита ионов лития. Часть образующихся при этом катионных вакансий заполняется ионами Nb, что приводит к увеличению концентраций структурных дефектов *b*и *q*-типов. Этим обстоятельством объясняется указанный выше рост полосы 3.48 eV в образцах, дополнительно восстанавливавшихся при 1150 К.

Переходим непосредственно к рассмотрению электронной структуры центров, определяющих оптические свойства НЛ.

3. Кластер [NbO₃]⁷⁻

Для построения последовательной модели электронных дефектов кристалла LiNbO₃ необходимо сконструировать исходные одноэлектронные состояния валентной зоны и зоны проводимости. В общем случае такая задача решается численно [16]. Качественные же особенности электронных состояний кристалла HЛ могут быть описаны в рамках упрощенной модели, которая, однако, включает в себя три наиболее важные черты этого кристалла: доминирующую роль ниобиевого октаэдра [NbO₆]^{7–} в формировании актуальных электронных состояний [17], сегнетоэлектрическое смещение иона Nb из центральной (параэлектрической) позиции кислородного октаэдра и симметрию кристалла, которую мы аппроксимируем группой C_{3y} .

В базис состояний включим пять 4*d*-орбиталей ниобия и восемнадцать 2*p*-орбиталей кислорода и пренебрежем О–О-взаимодействием. При таких упрощающих предположениях собственные векторы и собственные значения кластера $[NbO_6]^{7-}$ могут быть найдены точно, в аналитическом виде. Результаты расчетов (в силу их громозодкости) полностью приводить не будем. Укажем лишь два следствия, непосредственно связанных с дальнейшим рассмотрением: 1) низшим антисвязывающим состоянием кластера (с таким состоянием связывают дно зоны проводимости в кластерных расчетах) является дублет; 2), этот дублет является комбинацией 4*d*-состояний ниобия и 2*p*-состояний кислорода вида

$$\begin{split} \Psi_{1} &= D_{1}(E_{1})|x^{2} - y^{2}\rangle + D_{1}(E_{2})|xz\rangle + \sum_{n=\pm} \Big[P_{1}^{n}(E_{1})\Psi_{1}^{n}(E_{1}) \\ &+ P_{2}^{n}(E_{2})\Psi_{2}^{n}(E_{2}) + P_{1}^{n}(E_{3})\Psi_{1}^{n}(E_{3})\Big], \\ \Psi_{2} &= D_{2}(E_{1})|xy\rangle + D_{2}(E_{2})|yz\rangle + \sum_{n=\pm} \Big[P_{2}^{n}(E_{1})\Psi_{2}^{n}(E_{1}) \\ &+ P_{1}^{n}(E_{2})\Psi_{1}^{n}(E_{2}) + P_{2}^{n}(E_{3})\Psi_{2}^{n}(E_{3})\Big], \end{split}$$
(1)

где $|x^2 - y^2\rangle$, $|xy\rangle \dots$ — базисные 4*d*-орбитали иона ниобия, $\Psi_{1,2}^{\pm}(E_{1,2,3})$ — линейные комбинации базисных $|p_{\alpha}\rangle$ ($\alpha = x, y, z$) орбиталей кислорода, преобразующихся по неприводимому представлению E_1, E_2 или E_3 группы $C_{3\nu}, D_{1,2}(E_{1,2})$ и $P_{1,2}^{\pm}$ — амплитуды соответствующих базисных состояний ниобия и кислорода, нормированные на единицу, \pm обозначает состояния нижней и верхней кислородных плоскостей октаэдра, нормалью к которым служит оптическая ось *C* кристалла. Случайные кулоновские поля зарядовых компенсаторов, присутствующих в кристалле, снимают орбитальное вырождение состояний (1), что будет подразумеваться далее.

4. Биполярон

Как указывалось в [9], биполярон в кристалле ниобата лития представляет собой синглетную гайтлерлондоновскую пару $Nb_{Li}^{4+} - Nb_{Nb}^{4+}$ ближайших ионов Nb, электронные состояния которой стабилизированы локальной деформацией решетки. Для расчета спектра такой системы рассмотрим простейшую модель, в которой два электрона расположены на двух узлах решетки: *a* и *b*. Гамильтониан системы запишем в виде

$$H = \sum_{i\sigma} \varepsilon_{i} n_{i\sigma} + \sum_{ij\sigma} T_{ij} \left(c^{+}_{i\sigma} c_{j\sigma} + c^{+}_{j\sigma} c_{i\sigma} \right) + \sum_{i} U_{ii} n_{i\downarrow} n_{i\uparrow}$$
$$+ \sum_{ij\sigma} V_{ij} n_{i\sigma} n_{j\sigma} - \sum_{ij} J_{ij} n_{i\sigma} n_{j\sigma} + \frac{1}{2} \beta \sum_{ij} x^{2}_{ij}$$
$$+ \lambda \sum_{ij\sigma} \left(n_{i\sigma} + n_{j\sigma} \right) x_{ij}, \qquad (2)$$

где $n_{i\sigma} = c^+_{i\sigma}c_{i\sigma}$ — число электронов в узле *i* со спином σ , $c^+_{i\sigma}$, $c_{i\sigma}$ — операторы рождения, уничтожения электрона в узле *i* со спином σ , T_{ij} — интеграл перескока между узлами i(=a,c), j(=b,d), V_{ij} ,

J_{ij} — кулоновское и обменное взаимодействие между ними, U_{ii} — параметр Мотта-Хаббарда. Последние два слагаемых в (2) описывают упругую энергию решетки и электрон-решеточное взаимодействие соответственно, *x_{ii}* — локальная деформация связи *ij*. Гамильтониан (2) является обобщением гамильтониана работы [18] по трем аспектам: а) добавлено обменное взаимодействие J_{ij}, которое частично снимает вырождение по спину и важно для правильного учета триплетного состояния биполярона; b) одноэлектронные невозмущенные энергии ε_i и ε_j не равны между собой — это призвано моделировать неравенство атомных энергий на узлах Nb₁⁵⁺ и Nb⁵⁺_{Nb}; с) число невозмущенных уровней на каждом узле равно двум. Последнее обстоятельство связано с тем, что, как показано в предыдущем разделе, наинизшим антисвязывающим состоянием кластера [NbO₆]⁷⁻ является дублет, преобразующийся по представлению Е группы $C_{3\nu}$. Проводя в (2) стандартное [18] исключение электрон-фононного взаимодействия, получим поляронный гамильтониан вида

$$H = \sum_{i\sigma} \varepsilon_{i}^{\text{ef}} n_{i\sigma} + \sum_{ij\sigma} T_{ij}^{\text{ef}} \left(c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma} \right) + \sum_{i} U_{ii}^{\text{ef}} n_{i\downarrow} n_{i\uparrow} + \sum_{ij\sigma} V_{ij}^{\text{ef}} n_{i\sigma} n_{j\sigma} - \sum_{ij} J_{ij} n_{i\sigma} n_{j\sigma} \quad (3)$$

с перенормированными параметрами [19,20]

$$\varepsilon_i^{\text{ef}} = \varepsilon_i - \lambda^2 / \beta, \quad U_{ii}^{\text{ef}} = U_{ii} - 2\lambda^2 / \beta, \quad V_i^{\text{ef}} = V_{ij} - 2\lambda^2 / \beta,$$
$$T_{ij}^{\text{ef}} = T_{ij} \exp(-\lambda^2 / 2\beta\omega_0), \quad (4)$$

где ω_0 — частота колебаний атомов ($\omega_0^2 = \beta/m$).

Электронный спектр, описываемый поляронным гамильтонианом (3) с параметрами (4), рассчитывался нами численно в двухэлектронном базисе. Поскольку экспериментальные значения параметров (4) неизвестны, их значения подбирались в численных экспериментах из следующих соображений.

Затравочное значение параметра $\varepsilon_i^{\text{ef}}$, включающего в себя химический потенциал системы, можно определить для ионов Nb_{Li}^{4+} , приравняв его энергии активации Wэлектропроводности $\sigma(T) = \sigma_0 \exp(-W/kT)$, измеренной в LiNbO₃ Нагельсом [21]. Тогда получим оценку для $\varepsilon_i^{\text{ef}} \approx -(0.6 - 0.7) \,\text{eV}$. Что касается ионов Nb⁵⁺_{Nb}, то будем считать, что энергия их основного состояния лежит выше таковой для дефекта Nb_{Li}⁵⁺ в пределах 0.05-0.2 eV. Это предположение связано с тем, что, хотя основное состояние дефекта NbLi лежит в запрещенной зоне (т.е. ниже состояний Nb_{Nb}), не обнаруживается оптическая полоса переноса заряда $O(2p) \rightarrow Nb_{Li}(4d)$ с энергией $h\omega < E_{
m gap}$, которая должна была бы существовать и в окисленном кристалле. Поэтому параметр $\varepsilon_i^{\text{ef}}$ регулярного полярона Nb_{Nb}⁴⁺ можно оценить как 0.4-0.5 eV, что дает оценку для фактора поляронной редукции $\lambda^2/\beta \approx 0.4 - 0.5$ eV.

Таблица 1. Затравочные значения параметров гамильтониана (3) (энергии в eV)

U_{ii}^{ef}	$V_{ij}^{ m ef}$	J_{ij}	J_{ii}	$T_{ij}^{ m ef}$	$arepsilon_i^{ ext{ef}}$	$arepsilon_j^{ ext{ef}}$
2–3	-0.5 - 0.0	$< V_{ij} $	$\ll U_{ii}^{\mathrm{ef}}$	0.1–0.2	0.6–0.7	0.4–0.5

Таблица 2. Оптимизированные значения параметров гамильтониана (3) (энергии в eV)

$U_{ii}^{ m ef}$	$V_{ab}^{ m ef}$	V_{ac}^{ef}	J_{ab}	J_{ac}	$\varepsilon_a^{\mathrm{ef}}$	$\varepsilon_b^{ m ef}$	$\varepsilon_c^{ m ef}$	$\varepsilon_d^{ ext{ef}}$	T_{ab}
3.0	-0.5	1.5	0.01	0.05	-0.7	-0.55	-0.2	-0.05	0.2

Затравочные значения параметров V_{ij}^{ef} , U_{ii}^{ef} , J_{ij}^{ef} и T_{ij}^{ef} оценить сложнее, поэтому в наших численных экспериментах мы исходили из грубых оценок (однако результаты, как оказалось, наиболее чувствительны к значениям параметров $\varepsilon_i^{\text{eff}}$). Так, типичное значение параметра U_{ii} для свободных ионов $\sim 10 \, \text{eV}$ и более [22]. Однако ковалентность и электронная поляризация значительно уменьшают это значение вплоть до отрицательного значения, что стабилизирует андерсоновские биполяроны [19]. Поэтому для ионов Nb в кристалле LiNbO₃ затравочное значение U^{ef}_{ii} нами выбиралось в пределах $3-4 \,\mathrm{eV}$. Межионное кулоновское взаимодействие V_{ii} двух электронов на расстоянии 3 Å в кристалле $\sim 1 \, \text{eV}$, что дает затравочное значение $V_{ii}^{\rm ef} \sim 0-(-0.05) \, {\rm eV}$, что разумно, так как условием образования биполярона является либо притяжение поляронов (что характерно для кристаллов с узкой зоной проводимости [18]), либо малость V_{ii}^{ef} по сравнению с суперобменным взаимодействием, характерная величина которого $\sim 0.02 - 0.1 \, \mathrm{ev}$ [22]. Величина обменного взаимодействия J_{ii} варьировалась так, чтобы $J_{ij} < V_{ij} \ll U_{ii}$. При больших значениях обмена синглетное состояние биполярона разрушалось и переходило в триплетное со спином S = 1. Резонансный интеграл T_{ij} можно оценить для пары $\mathrm{Nb}_{\mathrm{Li}}^{4+}
ightarrow \mathrm{Nb}_{\mathrm{Nb}}^{4+}$ по схеме Харрисона [23], что дает $T_{ij} \approx 1\,{
m eV}$ для 4*d*-волновых функций $|3z^2 - r^2\rangle$ ионов Nb, ориентированных вдоль оси биполярона, параллельной оптической оси С кристалла. Тогда из (4) следует, что T_{ij}^{ef} лежит в пределах $0.1 - 0.15 \, {
m eV} ~(\omega_0 \sim 0.1 \, {
m eV})$, что соответствует частоте колебаний атомов $\sim 10^{13}$ Hz). Оцененные таким образом затравочные параметры (4) представлены в табл. 1.

Численное моделирование спектра пары Nb⁴⁺_{Li} – Nb⁴⁺_{Nb} показало, что синглетный биполярон стабилен при модельных значениях параметров (3), указанных в табл. 2, где a, c — две компоненты расщепленного дублета E иона Nb⁴⁺_{Li}, b, d — две компоненты расщепленного дублета E иона Nb⁴⁺_{Li}, b, d — две компоненты расщепленного дублета E иона Nb⁴⁺_{Nb}. Это расщепление мы связываем с электрическими полями компенсирующих дефектов в кристалле. Если это расщепление равно нулю, то, как показал численный анализ, основным состоянием биполярона будет спиновый триплет, что противоре-

Таблица 3. Собственные значения поляронного гамильтониана (3) (энергии в eV)

l	E_l	l	E_l	l	E_l	l	E_l
0	-1.35	7	-0.88	14	-0.31	21	0.93
1	-1.31	8	-0.82	15	-0.30	22	0.95
2	-1.31	9	-0.81	16	0.59	23	0.95
3	-1.30	10	-0.80	17	0.60	24	1.62
4	-0.93	11	-0.80	18	0.65	25	1.93
5	-0.90	12	-0.35	19	0.65	26	2.62
6	-0.90	13	-0.31	20	0.88	27	2.93

чит экспериментальным данным [9]. При значениях параметров (4) из табл. 2 спектр энергий биполярона представлен в табл. 3. Этот спектр можно разделить на три группы уровней. К первой относятся связанные состояния биполярона, энергии которых меньше энергии основного состояния $\varepsilon_a + \varepsilon_b = -1.25 \text{ eV}$ двух поляронов. Ко второй группе отнесем состояния, энергия *E* которых больше $\varepsilon_a + \varepsilon_b$, но меньше $\varepsilon_c + \varepsilon_d = -0.25 \text{ eV}$ энергии возбужденных состояний двух поляронов. В третьей группе лежат остальные состояния биполярона с энергией $E > \varepsilon_c + \varepsilon_d$. Переходы между первой и второй группами уровней лежат в ИК-диапазоне, а между первой и третьей — в видимом. Подробнее этот вопрос обсуждается далее.

Волновая функция основного ($E_0 = -1.35 \,\mathrm{eV}$) состояния представляется комбинацией вида

$$\Psi_{0} = -0.7 |\uparrow_{a}\downarrow_{b}\rangle + 0.7 |\downarrow_{a}\uparrow_{b}\rangle + 0.1 |\uparrow_{a}\downarrow_{a}\rangle + 0.1 |\uparrow_{b}\downarrow_{b}\rangle,$$
(5)

где стрелками указаны спины электронов в состояниях *а* и *b* (основные состояния ионов Nb⁴⁺_{Li} и Nb⁴⁺_{Nb} соответственно), $|\downarrow_a\uparrow_b\rangle$... — двухэлектронные волновые функции. Из (4) видно, что ψ_0 представляет собой комбинацию гайтлер-лондоновских $\{|\uparrow_a\downarrow_b\rangle, |\downarrow_a\uparrow_b\rangle\}$ и андерсоновских $\{|\uparrow_a\downarrow_a\rangle, |\uparrow_b\downarrow_b\rangle\}$ биполяронов: относительные амплитуды этих состояний определяются моттхаббардовским отталкиванием U_{ii}^{ef} и при отрицательных U_{ii}^{ef} основное состояние определяется андерсоновскими биполяронами ("negative-*U*-center").

Первое возбужденное состояние ($E_{1,2} = 1.31 \, \text{eV}$, двукратно вырождено) является спиновым триплетом с волновыми функциями вида

$$\Psi_1 = |\uparrow_a \uparrow_b\rangle, \qquad \Psi_2 = -|\downarrow_a \downarrow_b\rangle. \tag{6}$$

Поскольку спиновый триплет (6) некрамерсовый, для его регистрации необходимо использовать нетрадиционные методы, например акустический ЭПР. Однако заселенность триплета (6) при T = 4 К (типичная температура эксперимента акустического ЭПР) пренебрежимо мала.

Второе возбужденное состояние *E*₃ также является синглетным с волновой функцией

$$\Psi_3 = -0.71 |\uparrow_a \downarrow_b \rangle + 0.71 |\downarrow_a \uparrow_b \rangle. \tag{7}$$

5. *Q*-полярон

Как указывалось выше, концентрация пар $({\rm Nb}_{{\rm I},{\rm i}}^{5+}{-}{\rm Nb}_{{\rm I},{\rm i}}^{5+})^q,$ где q = +8 — заряд пары по отношению к решетке, в конгрузнтном кристалле ниобата лития $\approx 10^{18} \, \mathrm{cm}^{-3}$. Поэтому заполнение этих ловушек электронами должно влиять на оптический спектр кристаллов ниобата лития, причем при энергиях, больших энергии оптической диссоциации синглетного Nb⁴⁺_{Li}-Nb⁴⁺_{Nb} с полосой оптического биполярона поглощения около 2.33 eV. Численное моделирование состояния Nb_{1i}⁴⁺-Nb_{1i}⁴⁺ биполяронного методом, описанным в предыдущем разделе, показало, что такой дефект не вносит вклада в оптический спектр кристалла в области энергий $E > 2.3 \,\text{eV}$. Поэтому был рассмотрен четырехэлектронный дефект

$$Nb_{Nb}^{4+} - Nb_{Nb}^{4+}$$

 $Nb_{Li}^{4+} - Nb_{Li}^{4+}$, (8)

в котором, однако, на каждый ион Nb приходится только один невырожденный уровень. Поэтому такой дефект также описывается "четырехузельным" гамильтонианом (2), (3), но в четырехэлектронном базисе. При этом из набора базисных состояний мы исключили состояния типа $|\uparrow_a\downarrow_b\uparrow_b\downarrow_b$ $0_c0_d\rangle$... с друмя андерсоновскими биполяронами, так как их энергии порядка 2*U* лежат выше зоны проводимости. Поскольку дефект (8), геометрия которого представлена на рис. 5, можно рассматривать как комбинацию двух биполяронов Nb⁴⁺_{Li} – Nb⁴⁺_{Nb}, рассмотренных выше, при численном моделировании спектра такого дефекта можно использовать результаты предыдущего раздела. При этом мы учитывали, что, поскольку $T_{ij} \sim r^{-5}$ [23], где r — расстояние между ближайшими ионами Nb резонансный интеграл между

Таблица 4. Собственные значения поляронного гамильтониана (3) для четырехполяронной задачи (энергии в eV)

l	E_l	l	E_l	l	E_l	l	E_l
0	-2.67	16	-0.17	32	0.26	48	0.57
1	-2.65	17	-0.13	33	0.28	49	0.62
2	-2.65	18	-0.11	34	0.33	50	0.63
3	-2.63	19	-0.10	35	0.34	51	0.68
4	-2.63	20	-0.09	36	0.37	52	0.70
5	-2.62	21	-0.03	37	0.40	53	0.71
6	-2.62	22	-0.01	38	0.41	54	0.73
7	-2.60	23	0.03	39	0.42	55	0.75
8	-2.60	24	0.12	40	0.45	56	0.79
9	-2.58	25	0.19	41	0.46	57	0.80
10	-2.58	26	0.20	42	0.47	58	0.83
11	-2.58	27	0.21	43	0.52	59	0.84
12	-2.58	28	0.21	44	0.53	60	0.89
13	-2.58	29	0.22	45	0.54	61	0.94
14	-2.57	30	0.23	46	0.56	62	0.96
15	-2.55	31	0.24	47	0.57	63	0.99

парой биполяронов меньше соответствующей величины для биполярона примерно в $(3 \text{ Å})^5/(3.76 \text{ Å})^5 \cong 3$ раза. Результаты численного моделирования четырехэлектронного спектра представлены в табл. 4.

Спектр состояний *Q*-полярона, представленный в табл. 4, можно разделить на две группы уровней. К первой относятся связанные состояния *Q*-полярона, энергии которых меньше энергии основного состояния $\varepsilon_a + \varepsilon_b + \varepsilon_c + \varepsilon_d = -2.5 \text{ eV}$ четырех поляронов. Во второй группе лежат остальные состояния *Q*-полярона с энергией $E > \varepsilon_a + \varepsilon_b + \varepsilon_c + \varepsilon_d$. Из табл. 3,4 видно, что основное состояние *Q*-полярона ниже энергии четырех поляронов (первая группа), но выше энергии двух биполяронов = $(-1.35) \cdot 2 = -2.7 \text{ eV}$. Поэтому *Q*-полярон, смоделированный в данной работе — это четыре связанных полярона.

Волновая функция основного состояния E_0 *Q*-полярона является комбинацией синглетных четырехэлектронных базисных функций вида

$$\begin{split} \Psi_{0} &\approx -0.47 |\uparrow_{a}\uparrow_{b}\downarrow_{c}\downarrow_{d}\rangle - 0.48 |\downarrow_{a}\downarrow_{b}\uparrow_{c}\uparrow_{d}\rangle \\ &- 0.5 |\uparrow_{a}\downarrow_{b}\downarrow_{c}\uparrow_{d}\rangle - 0.5 |\downarrow_{a}\uparrow_{b}\uparrow_{c}\downarrow_{d}\rangle. \end{split}$$
(9)

Здесь и далее мы для простоты опустили слагаемые с амплитудами < 0.1. Первое возбужденное состояние в первой группе двукратно вырождено по энергии, описывается волновыми функциями вида

$$\Psi_{1} \approx -0.28 |\downarrow_{a}\uparrow_{b}\uparrow_{c}\uparrow_{d}\rangle - 0.59 |\uparrow_{a}\downarrow_{b}\uparrow_{c}\uparrow_{d}\rangle - 0.61 |\uparrow_{a}\uparrow_{b}\downarrow_{c}\uparrow_{d}\rangle$$
$$- 0.28 |\uparrow_{a}\uparrow_{b}\uparrow_{c}\downarrow_{d}\rangle + 0.1 |\uparrow_{a}\downarrow_{b}\downarrow_{c}\downarrow_{d}\rangle + 0.2 |\downarrow_{a}\uparrow_{b}\downarrow_{c}\downarrow_{d}\rangle$$
$$+ 0.21 |\downarrow_{a}\downarrow_{b\uparrow_{c}\downarrow_{d}}\rangle + 0.1 |\downarrow_{a}\downarrow_{b}\downarrow_{c}\uparrow_{d}\rangle$$
(10)

и лежит выше основного на 0.02 eV. Поскольку состояние (10) некрамерсово, обнаружить его затруднительно по тем же причинам, что и триплетный биполярон (6). Примечательной особенностью полученного спектра является широкая (~2.5 eV) щель в спектре между уровнями первой и второй группы. Последствия этого будут проанализированы далее.

6. Оптические свойства

Оптические свойства биполярона в представленной модели обсудим лишь с качественной стороны, поскольку для количественных оценок необходимо знание параметров гамильтониана (2). Оптический переход из основного состояния биполярона в зону проводимости разрешен по четности. Для этого надо учесть, что состояния зоны проводимости, согласно кластерному расчету, являются линейными комбинациями 4*d*-состояний ниобия и 2*p*-состояний кислорода

$$\Psi_{\text{cond}} = a\Psi_{4d} + b\Psi_{2p}.\tag{11}$$

Волновая функция основного состояния биполярона является слэторовским детерминантом, построенным,

вообще говоря, из одноэлектронных антисвязывающих состояний кластера [NbO₆], имеющих вид, как в (1), (11). Поэтому матричный элемент дипольного момента будет ненулевым и определяется матричными элементами $4d \rightarrow 2p$ -переходов, разрешенных по четности. При сопоставлении с экспериментальными данными следует принимать во внимание тот факт, что в LiNbO3 максимум мнимой части диэлектрической проницаемости $\varepsilon_2(\omega)$ смещен вверх от дна зоны проводимости на величину порядка 1 eV [17]. Последнее обстоятельство является, видимо, общим свойством перовскитов [24,25]. С учетом этого замечания полосу оптического поглощения с центром около 2.3 eV можно в рамках предлагаемой модели интерпретировать как оптический переход из основного состояния синглетного биполярона в зону проводимости.

В предлагаемой модели биполярона расстояние между уровнями первой и третьей группы (табл. 3) лежит в оптическом диапазоне. Из этого множества выделим переходы с $\Delta S = 0$, где S — спин биполярона. Тогда получим, что при T = 0 из основного состояния с энергией Е0 возможны оптические переходы в состояния с энергиями $E_{22} = E_{23}$ (энергия кванта $h\nu = 2.3 \,\text{eV}$) и $E_{18} = E_{19} (h\nu = 2.0) \,\text{eV}$). Не запрещены по четности и по спину переходы из основного состояния биполярона в состояния андерсоновских биполяронов E_{24} ($h\nu = 2.97 \,\mathrm{eV}$), E_{25} ($h\nu = 3.28 \,\mathrm{eV}$), $E_{26}~(h\nu~=~3.97\,{\rm eV})$ и $E_{27}~(h\nu~=~4.28\,{\rm eV})$. Указанные значения близки к полученным разложениями экспериментальных спектров (рис. 2, 4). Плотность этих состояний в 2 раза меньше плотности состояний $E_{22} = E_{23}$ и $E_{18} = E_{19}$.

Следует отметить и то, что, как видно из табл. 3, минимальный порог оптической диссоциации биполярона на два полярона лежит в ИК-области. Этому соответствует оптический переход ($\Delta M = 1$, $\Delta S = 0$) $E_0 \rightarrow E_5$ с $h\nu = 0.45$ eV. Такое свойство соответствует нашим данным.

Аналогичные соображения использовались и при анализе спектра Q-полярона. При этом переходу из основного состояния Q-полярона соответствует широкая оптическая полоса поглощения около 3.5 eV, впервые выделенная в [12]. Особенностью этой полосы поглощения является то, что она обесцвечивается лишь при величине оптического кванта $h\nu > 2.5$ eV. Эта особенность объясняется в нашей модели существованием в спектре Q-полярона щели порядка $E_{16} - E_{15} \approx 2.5$ eV (табл. 4).

Таким образом, имеется качественное соответствие данных, полученных из предлагаемой модели, наблюдаемым в эксперименте.

Авторы признательны Б.М. Хабибуллину за полезные обсуждения и С.П. Миронову за помощь в проведении экспериментов и обработке результатов.

Список литературы

- P.J. Jorgensen, R.W. Bartlett. J. Phys. Chem. Sol. 30, 12, 2639 (1969).
- [2] W. Phillips, D.L. Staebler. J. Electron. Mater. 3, 2, 601 (1974).
- [3] M.G. Clark, F.J. DiSalvo, A.M. Glass, G.E. Peterson. J. Chem. Phys. 59, 12, 6209 (1973).
- [4] O.F. Schirmer, D. von der Linde. Appl. Phys. Lett. **33**, *1*, 35 (1978).
- [5] Y. Ketchum, K. Sweeney, L. Halliburton. Phys. Lett. A94, 3, 450 (1983).
- [6] D.M. Smyth. Ferroelectrics 50, 93 (1983).
- [7] G.G. De Leo, G.L. Dobson, M.E. Masters, L.H. Bonjack. Phys. Rev. B37, 10, 8394 (1988).
- [8] H. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, O.F. Schirmer. Phys. Rev. B40, 11, 909 (1989).
- [9] O.F. Schirmer, O. Thieman, M. Wohlecke. J. Phys. Chem. Sol. 52, 1, 185 (1991).
- [10] И.Ш. Ахмадуллин, В.А. Голенищев-Кутузов, С.А. Мигачев, С.П. Миронов. ФТТ **32**, *6*, 1854 (1990).
- [11] I.Sh. Akhmadullin, S.A. Migachev, S.P. Mironov, Nucl. Instr. Meth. Phys. Res. B65, 260 (1992).
- [12] И.Ш. Ахмадуллин, В.А. Голенищев-Кутузов, С.А. Мигачев, С.П. Миронов. ФТТ **37**, *2*, 415 (1995).
- [13] A. Garcia-Cabanes, J.A. Sanz-Garcia, J.M. Cabrera, F. Agullo-Lopez, C. Saldo, P. Pareja, K. Polgar, K. Raksanyi, I. Foldvari. Phys. Rev. B37, 9, 6085 (1988).
- [14] A. Garcia-Cabanes, E. Dieguez, J.M. Cabrera, F. Agullo-Lopez. J. Phys. Cond. Matt. 1, 6453 (1989).
- [15] S.C. Abrahams, P. Marsh. Acta. Cryst. B42, 61 (1986).
- [16] W.Y. Ching, Zong-Quan Gu, Y.N. Xu. Phys. Rev. B50, 3, 1992 (1994).
- [17] B.K. Chakraverty, M. Sienko, J. Bonnerot. Phys. Rev. B17, 10, 3781 (1978).
- [18] Zheng Hang. Solid. State. Commun. 65, 7, 731 (1988).
- [19] P.W. Anderson. Phys. Rev. Lett. 34, 15, 953 (1975).
- [20] L. Hafid, F.M. Michel-Calendini. J. Phys. C19, 16, 2907 (1986).
- [21] P. Nagels. The hall Effect and its Applications / Ed. C.L. Chien, C.R. Westlake. Plenum Press. N.Y. (1980). 253 p.
- [22] P.W. Anderson. Phys. Rev. 115, 1, 2 (1959).
- [23] W.A. Harrison. Electronic structure and the properties of solids. W.H. Freeman & Co, San Francisco (1980).
- [24] F.M. Michel-Calensini, H. Chermette, J. Weber. J. Phys. C13, 8, 1427 (1980).
- [25] С.А.Просадеев. Электронное строение и физические свойства ионно-ковалентных кристаллов. Ростов-на-Дону (1990). 189 с.