Влияние примеси меди на спектр поглощения тонких пленок суперионных проводников MAg_4I_5 (M = K, Rb)

© О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко*

Харьковский национальный университет, 61077 Харьков, Украина * Харьковский национальный университет радиоэлектроники, 61166 Харьков, Украина E-mail: Vladimir.K.Miloslavsky@univer.kharkov.ua,

E-mail: Vladimir.K.Miloslavsky@univer.kharkov.ua, Olga.N.Yunakova@univer.kharkov.ua

(Поступила в Редакцию 29 марта 2005 г.)

Исследован спектр поглощения тонких пленок твердых электролитов MAg_4I_5 (M = K, Rb) с примесью меди ($0 \le x \le 0.15$) в области спектра 2–6 eV при 90 и 290 K. Установлено, что критическая концентрация примеси Cu $x_{crit} = 0.05$: при $x \le 0.05$ образуются твердые растворы $MAg_{4-4x}Cu_{4x}I_5$ и пленки устойчивы по структуре спектра. При x > 0.05 в пленках выделяются отдельные фазы — $MAg_{4-4x}Cu_{4x}I_5$, $Ag_{1-x}Cu_xI$, M_2AgI_3 .

PACS: 78.40.Ha, 73.90.+f

Соединения MAg_4I_5 (M = K, Rb) относятся к классическим твердым электролитам с высокой ионной проводимостью при комнатной температуре. Поиск более дешевых электролитов стимулировал работы по получению и исследованию медьсодержащих твердых электролитов с кристаллической структурой типа RbAg_4I_5. В системе (RbI)_{1-x}(CuI)_x соединение RbCu_4I_5 не образуется, при x = 0.66 кристаллизуется соединение RbCu_2I_3, при x = 0.4 Rb₃Cu_2I_5 [1]. В системе (KI)_{1-x}(CuI)_x установлено одно соединение KCu_4I_5, x = 0.8, устойчивое в интервале температур 257°-332°C [1]. В этом интервале температур KCu_4I_5 обладает высокой ионной проводимостью $\sigma = 0.5 - 1 \Omega^{-1} \cdot \text{cm}^{-1}$ [2], при комнатной температуре проводимость KCu_4I_5 существенно ниже $\sigma \sim 1.5 \cdot 10^{-6} \Omega^{-1} \cdot \text{cm}^{-1}$ [3,4].

Влияние примеси меди на электропроводность RbAg₄I₅ в массивных образцах исследовалось в [5], в тонких пленках — в [6]. Согласно [5,6], при малых концентрациях меди (x < 0.3) образуются твердые растворы RbAg_{4-4x}Cu_{4x}I₅. В [5] отмечается стабильность твердых растворов при x < 0.3 и их высокая проводимость, близкая к проводимости RbAg₄I₅. В [6], напротив, проводимость тонких пленок $RbAg_{4-4x}Cu_{4x}I_5$ близка к σ $RbAg_4I_5$ только при x < 0.04, с ростом x проводимость уменьшается от $0.31 \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$ (x = 0.04) до $0.13 \,\Omega^{-1} \cdot \text{cm}^{-1}$ (*x* = 0.3). В [6] измерялся также спектр поглощения тонких пленок RbAg_{4-4x}Cu_{4x}I₅ в области прозрачности и края собственной полосы поглошения при комнатной температуре, авторы отмечают сходство спектров RbAg_{4-4x}Cu_{4x}I₅ и RbAg₄I₅. УФ спектры поглощения тонких пленок $MAg_{4-4x}Cu_{4x}I_5$ (M = K, Rb) не исследовались.

В то же время в [7,8] установлено, что введение примесей редкоземельных металлов (Sm, Yb) в AgI-подрешетку RbAg₄I₅ приводит к существенному изменению фундаментального спектра поглощения и появлению дополнительных полос поглощения в области прозрачности соединения. Учитывая локализацию экситонных и электронных возбуждений в AgIподрешетке соединений [9,10], следует ожидать, что примесь ионов Cu также окажет влияние на спектр поглощения MAg_4I_5 (M = K, Rb). Получение тонких пленок твердых электролитов $MAg_{4-4x}Cu_{4x}I_5$ и исследование их спектров представляет интерес не только в связи с их возможным применением, но также для изучения влияния примесей на экситонные состояния соединений.

В настоящей работе исследуются влияние малых концентраций меди $(0 < x \le 0.15)$ на электронный спектр поглощения и стабильность тонких пленок MAg_4I_5 .

1. Эксперимент

Тонкие пленки $MAg_{4-4x}Cu_{4x}I_5$ ($0 \le x \le 0.15$) приготавливались путем испарения в вакууме смеси чистых порошков MI (M = K, Rb), AgI и CuI заданного молярного состава на кварцевые подложки. Для получения соединений MAg_4I_5 состав смеси $(MI)_{1-x}(AgI)_x$ брался с небольшим избытком AgI (x = 0.83), так как при испарении стехиометрического состава x = 0.8 в спектрах поглощения MAg_4I_5 появляется интенсивная полоса поглощения при 4.4 eV, соответствующая экситонному поглощению в M_2AgI_3 [11]. Такое же соотношение MI и $Ag_{1-x}Cu_xI$ выдерживалось и при приготовлении тонких пленок $MAg_{4-4x}Cu_{4x}I_5$. Смесь порошков предварительно расплавлялась под экраном в вакууме и с большой скоростью $v \approx 300$ Å/s испарялась на подложку.

Спектры поглощения измерялись на спектрофотометре СФ-46 в области спектра 2–6 eV при 90 и 290 К. Толщина пленок определялась методом линий равного хроматического порядка.

2. Спектры поглощения тонких пленок RbAg_{4-4x}Cu_{4x}I₅

Спектры поглощения тонких пленок RbAg_{4-4x}Cu_{4x}I₅ ($0 \le x \le 0.15$) подобны по структуре спектра и близки по положению основных полос поглощения (рис. 1). В спектре поглощения пленок RbAg₄I₅ (x = 0) наблюдается интенсивная длинноволновая A_1 -полоса при 3.345 eV (T = 90 K), после отделения A_1 -полосы на длинноволновом склоне B_1 -полосы наблюдается уступ при 3.45 eV — A_2 -полоса, B_1 - и B_2 -полосы расположены при 3.74 и 4.1 eV. В более коротковолновой области спектра наблюдаются особенности при 4.4 (A_1^{II} -полоса), 5.06 (B^{II} -полоса) и 5.55 eV (C-полоса). При $x \ge 0.1$ в спектрах поглощения появляется дополнительная полоса поглощения при 2.84 eV ($Z_{1,2}$ -полоса), а A_1 -полоса расщепляется на полосы A_1' и A_1'' при 3.345 и 3.51 eV

Рис. 1. Спектры поглощения тонких пленок $RbAg_{4-4x}Cu_{4x}I_5$: I - x = 0 (290 K), 2 - 0 (90 K), 3 - 0.05 (90 K), 4 - 0.1(90 K), 5 - 0.1 (90 K) через 24 часа, 6 - x = 0.15 (90 K); Rb_2AgI_3 : 7 - 290, 8 - 90 K.

соответственно. Более подробно на изменениях в спектре тонких пленок $RbAg_{4-4x}Cu_{4x}I_5 x \ge 0.1$ остановимся далее.

Для анализа наблюдаемых спектров целесообразно сравнить их со спектрами всех соединений, которые могут кристаллизоваться при испарении смеси RbAg_{4-4x}Cu_{4x}I₅. Согласно фазовой диаграмме [1], в системе $(RbI)_{1-r}(AgI)_r$ кроме соединения $RbAg_4I_5$ (*x* = 0.8) кристаллизуется соединение Rb_2AgI_3 (x = 0.33). В спектре поглощения тонких пленок Rb₂AgI₃ (рис. 1) наблюдаются интенсивная полоса A₁ при 4.38 eV (T = 90 K), более слабая полоса A_2 при 4.66 eV, интенсивные полосы В и С при 5.06 и 5.69 eV. По-видимому, слабые особенности при 4.4 и 5.06 eV в спектре поглощения тонких пленок RbAg₄I₅ связаны с примесью в них фазы Rb₂AgI₃. Подробно спектры поглощения тонких пленок RbAg₄I₅ обсуждались в [9], Rb₂AgI₃ — в [11]. Было установлено, что электронные и экситонные возбуждения в обоих соединениях локализованы в AgI подрешетке, в Rb₂AgI₃ — в цепочках из тетраэдров AgI_4 , ориентированных вдоль оси **b** [11]. Сложный характер спектра RbAg₄I₅ обусловлен сложным строением кристаллической решетки соединения. В RbAg₄I₅ 16 ионов серебра неравномерно распределены по 56 тетраэдрическим пустотам и разбиваются на три группы Ag(II), Ag(III) и Ag(C) по классификации Геллера [12,13]. В группах (II) и (III) содержатся 9.38 и 5.5 ионов Ag на 24 места, в группе (C) - 0.88 иона на 8 мест [13]. В [9] показано, что наиболее длинноволновая и интенсивная полоса A₁ связана с возбуждением экситонов в подрешетке, содержащей ионы Ag(II), полосы B - Ag(III).

Введение малой концентрации меди $x \le 0.05$ не приводит к заметным изменениям в спектре поглощения. В спектре пленки RbAg_{4-4x}Cu_{4x}I₅ (x = 0.05) (рис. 1) наблюдаются те же полосы поглощения, что и в RbAg₄I₅, но полуширина полосы A₁ увеличивается с $\Gamma = 10 \text{ meV}$ при x = 0 до $\Gamma = 15 \text{ meV}$ при x = 0.05 и далее с ростом х не меняется. Дальнейшее увеличение концентрации Си приводит к существенным изменениям в спектре RbAg_{4-4x}Cu_{4x}I₅ — расщеплению полосы A₁ на полосы A₁' и A₁'', появлению дополнительной полосы $Z_{1,2}$ в области прозрачности при 2.84 eV, увеличению интенсивности коротковолновых полос поглощения при 4.4, 4.66 и 5.06 eV. Увеличение интенсивности коротковолновых полос поглощения свидетельствует об увеличении в пленке примеси фазы Rb₂AgI₃. Полоса Z_{1,2} при 2.84 eV по своему положению совпадает с полосой $Z_{1,2}$ в твердых растворах $Ag_{1-x}Cu_x I$ (0.1 < x < 0.4). В указанном интервале х твердые растворы имеют решетку типа сфалерита [14]. С ростом температуры полоса Z_{1,2} ослабляется, уширяется и сдвигается в длинноволновую область спектра, что указывает на ее экситонное происхождение. Мы связываем ее с экситонным поглощением в фазе $Ag_{1-x}Cu_xI$. С ростом x интенсивность полосы $Z_{1,2}$ и коротковолновых полос A_1^{II} , A_{2}^{II}, B^{II} и C увеличивается, т.е. введение Cu способствует образованию твердых растворов Ag_{1-x}Cu_xI и фазы Rb₂AgI₃, что коррелирует с результатами работы [6]: с ростом x (x > 0.04) проводимость тонких пленок RbAg_{4-4x}Cu_{4x}I₅ уменьшается, по-видимому, из-за увеличения в пленках доли непроводящих фаз Ag_{1-x}Cu_xI и Rb₂AgI₃. При $x \le 0.04$ проводимость тонких пленок такая же, как и RbAg₄I₅ [6], что также согласуется с нашими результатами — при $x \le 0.05$ спектр поглощения тонкой пленки RbAg_{4-4x}Cu_{4x}I₅ такой же, как и RbAg₄I₅. В [6] также наблюдалась полоса при 430 nm, соответствующая экситонному поглощению Ag_{1-x}Cu_xI, которую авторы ошибочно приписывают запрещенному внутреннему переходу в свободном Ag⁺.

Незначительная часть меди, по-видимому, растворяется в Ag(II) подрешетке RbAg₄I₅. Поскольку полоса A_1 соответствует возбуждению экситонов в Ag(II) подрешетке [9], а наиболее существенные изменения при $x \ge 0.1$ наблюдаются в районе полосы A_1 (полоса A_1 расщепляется на полосы A'_1 и A''_1), мы предполагаем, что ионы меди замещают ионы Ag в Ag(II) подрешетке, чему способствует близость ионных радиусов $r_{\rm Cu} = 1.01$ Å (по другим данным, $r_{\rm Cu} = 0.8$ Å) и серебра $r_{Ag} = 1.13$ Å $(r_{Rb} = 1.49$ Å) [15]. Для катионных мест Ag(II) все четыре грани иодного тетраэдра обращены к ионам Ag⁺ [13] и внедрение в решетку иона Cu⁺ меньшего радиуса вызывает сжатие в окрестности Cu⁺. По-видимому, возникающие при этом локальные напряжения в решетке приводят к снятию вырождения верхней валентной зоны и расщеплению ее на две подзоны. Переходу из этих подзон в зону проводимости и соответствуют полосы A'_1 и A''_1 .

Следует отметить, что в спектрах поглощения тонких пленок $RbAg_{4-4x}Cu_{4x}I_5$ не проявляются полосы, соответствующие поглощению в $RbCu_2I_3$ (4.02, 4.18, 4.29 и 4.6 eV [16]), и $Rb_3Cu_2I_5$ (4.35, 4.6 и 4.81 eV [17]), повидимому, эти соединения не образуются при испарении смеси порошков молярного состава $RbAg_{4-4x}Cu_{4x}I_5$.

Таким образом, твердые растворы RbAg_{4-4x}Cu_{4x}I₅ образуются при $x \le 0.05$, при x > 0.05 в тонких пленках кристаллизуются три фазы: RbAg₄I₅ с малой примесью меди, Ag_{1-x}Cu_xI и Rb₂AgI₃. С ростом x положение и полуширина экситонных полос A'_1 и A''_1 , присущих фазе RbAg₄I₅:Cu⁺, не меняются, что подтверждает принадлежность их фазе RbAg₄I₅:Cu⁺, а не твердым растворам.

Внедрение ионов меди в решетку RbAg₄I₅ при x > 0.05 делает это соединение нестабильным. С течением времени RbAg₄I₅:Cu⁺ распадается, на что указывает ослабление полос A'_1 и A''_1 в спектре (кривая 5 на рис. 1). При этом интенсивность полосы $Z_{1,2}$ и коротковолновых полос A^{II}_1 , A^{II}_2 и B^{II} увеличивается. Рост интенсивности полосы $Z_{1,2}$ указывает на увеличение в пленках доли твердых растворов Ag_{1-x}Cu_xI, а полос A^{II}_1 , A^{II}_2 и B^{II} — Rb₂AgI₃. По-видимому, распад происходит по схеме

$$2RbAg_{4-4x}Cu_{4x}I_5 \rightarrow 7Ag_{1-x}Cu_xI + Rb_2Ag_{1-x}Cu_xI_3.$$

Твердые растворы $Rb_2Ag_{1-x}Cu_xI_3$ не исследовались. Нам неизвестно, как влияет примесь Cu на положение

основных полос поглощения в Rb₂AgI₃. Предполагаем, что при малых концентрациях Cu (x < 0.15) положения основных полос поглощения в Rb₂Ag_{1-x}Cu_xI₃ и Rb₂AgI₃ близки.

3. Спектры поглощения тонких пленок КАg_{4-4x}Cu_{4x}I₅

Соединения KAg₄I₅ и RbAg₄I₅ — изоструктурные, с близкими параметрами решетки в фазе α : a = 11.13 и 11.24 Å соответственно [18]. Спектры поглощения обоих соединений подобны по структуре спектра и близки по положению основных полос поглощения. В спектре поглощения тонких пленок KAg₄I₅ (рис. 2) наблюдается длинноволновая экситонная A_1 -полоса при 3.32 eV, A_2

Рис. 2. Спектры поглощения тонких пленок $KAg_{4-4x}Cu_{4x}I_5$: I - x = 0 (290 K), 2 - 0 (90 K), 3 - 0.05 (90 K), 4 - 0.1(90 K), 5 - 0.1 (90 K) через 24 часа, 6 - x = 0.15 (90 K); K_2AgI_3 : 7 - 290, 8 - 90 K.

797

при 3.44 eV, B_1 при 3.74 eV и B_2 при 4.13 eV. В коротковолновой области спектра наблюдаются полосы при 4.44, 4.7 и 5.1 eV, по положению совпадающие с полосами A_1 (4.43 eV), A_2 (4.69 eV) и B (5.17 eV) в K₂AgI₃ (рис. 2), которые мы связываем с примесью в пленке фазы K₂AgI₃.

Малые концентрации примеси Cu ($x \le 0.05$) не вызывают заметных изменений в спектре поглощения КАg₄I₅ и не сказываются на стабильности соединения. Тонкие пленки КАg₄I₅ и пленки с примесью меди *x* ≤ 0.05 стабильны во времени. Увеличение примеси Си приводит к сильному ослаблению длинноволновой полосы А1 и появлению дополнительного поглощения при 2.84 eV, которое мы, как и в случае тонких пленок RbAg_{4-4x}Cu_{4x}I₅, связываем с образованием твердых растворов $Ag_{1-x}Cu_xI$. С ростом x полоса A_1 сильно ослабляется, интенсивность полос $Z_{1,2}$, A_1^{II} , A_2^{II} и Bувеличивается, что указывает на распад КАg_{4-4x}Cu_{4x}I₅ на $Ag_{1-x}Cu_xI$ и K_2AgI_3 . Распад даже номинально чистых пленок KAg_4I_5 на AgI и K_2AgI_3 был обнаружен в [19]. В наших измерениях спектров чистых пленок KAg₄I₅ после их хранения в течение месяца признаков распада не обнаружено.

Как уже отмечалось выше, в системе $(KI)_{1-x}(CuI)_x$ при x = 0.8 кристаллизуется соединение KCu₄I₅, устойчивое в интервале температур 257-332°С [1] и изоструктурное КАg₄I₅ [3]. По-видимому, в процессе испарения смеси порошков заданного молярного состава образуются твердые растворы КАg_{4-4x}Cu_{4x}I₅, которые по мере охлаждения пленки из-за неустойчивости КСи₄I₅ при $T < 257^{\circ}$ С распадаются на твердые растворы $Ag_{1-x}Cu_xI$ и соединение K_2AgI_3 . При быстром охлаждении пленки фаза КАg_{4-4x}Cu_{4x}I₅ частично сохраняется, в спектре поглощения она проявляется полосами поглощения A₁ и B (рис. 2). Однако при $x \ge 0.1$ фаза КАg_{4-4x}Cu_{4x}I₅ неустойчива и со временем распадается на $Ag_{1-x}Cu_xI$ и K_2AgI_3 (или $K_2Ag_{1-x}Cu_xI_3$), о чем свидетельствует рост интенсивности полосы Z_{1,2} $(Ag_{1-x}Cu_xI)$ и полос A_1^{II} , A_2^{II} и C (K₂AgI₃) со временем (рис. 2).

4. Заключение

Таким образом, при концентрации меди $x \le 0.05$ спектры поглощения тонких пленок $MAg_{4-4x}Cu_{4x}I_5$ такие же, как MAg_4I_5 (M = K, Rb), при x > 0.05 существенно отличаются. Отличие в спектрах обусловлено появлением в пленках фаз $Ag_{1-x}Cu_xI$ и M_2AgI_3 . Увеличение в пленках $MAg_{4-4x}Cu_{4x}I_5$ с ростом x непроводящих фаз $Ag_{1-x}Cu_xI$ и M_2AgI_3 , по-видимому, и обусловило уменьшение их проводимости, выявленное в работе [6].

Тонкие пленки $MAg_{4-4x}Cu_{4x}I_5$ стабильны в интервале концентраций $0 \le x \le 0.05$. По-видимому, в этом интервале концентраций образуются твердые растворы. При x > 0.05 фаза $MAg_{4-4x}Cu_{4x}I_5$ в тонких пленках неустойчива и со временем распадается на $Ag_{1-x}Cu_xI$ и M_2AgI_3 .

Список литературы

- J.N. Bradley, P.D. Greene. Trans. Farad. Soc. 63, 530, part 2, 424 (1967).
- [2] F. Bonino, M. Lazzari. J. Power Sour. 1, 1, 103 (1976).
- [3] T. Matsui, J. Wagner, Jr. Bruce. J. Electrochem Soc. 124, 6, 937 (1977).
- [4] R.S. Bhuniya, R.S. Eswara, G. Samanta. J. Phys. D: Appl. Phys. 19, 10, 1947 (1986).
- [5] В.Н. Загороднев, Н.В. Личкова, Е.Б. Якимов. Электрохимия 18, 12, 1650 (1982).
- [6] K. Hariharan. J. Solid State Chem. 34, 3, 335 (1980).
- [7] А.Л. Деспотули, Л.А. Деспотули. ФТТ 39, 9, 1544 (1997).
- [8] А.Л. Деспотули, Л.А. Матвеева. ФТТ 41, 2, 218 (1999).
- [9] В.К. Милославский, Сунь Цзя-Линь, О.Н. Юнакова. Функцион. мат. 1, *1*, 51 (1994).
- [10] В.К. Милославский, Сунь Цзя-Линь. Функцион. мат. 2, 4, 438 (1995).
- [11] В.К. Милославский, Сунь Цзя-Линь, О.Н. Юнакова. УФЖ 41, 4, 471 (1996).
- [12] S. Geller. Science 157, 58 (1967).
- [13] S. Geller. Phys. Rev. B 14, 10, 58 (1976).
- [14] О.Н. Юнакова, В.К. Милославский, Х. Нойман. ФТТ 29, 1, 44 (1987).
- [15] И.Т. Гороновский, Ю.П. Назаренко, Е.Ф. Некряч. Краткий справочник по химии. Наук. думка, Киев (1987).
- [16] В.К. Милославский, О.Н. Юнакова, Сунь Цзя-Линь. Оптика и спектроскопия 78, 3, 436 (1995).
- [17] О.Н. Юнакова, В.К. Милославский, Е.Н. Коваленко. Функцион. мат. 7, 3, 402 (2000).
- [18] B.B. Owens, G.R. Argue. Science 157, 308 (1967).
- [19] Р. Галбадрах, В.К. Милославский. УФЖ 39, 2, 167 (1994).