Эмиссионная мессбауэровская спектроскопия на изотопах 61 Cu(61 Ni) и 133 Ba(133 Cs) в Tl₂Ba₂Ca_{n-1}Cu_nO_{2n+4}

© В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Поступила в Редакцию 2 октября 1997 г.)

Методом эмиссионной мессбауэровской спектроскопии (ЭМС) на изотопах 61 Cu(61 Ni) и 133 Ba(133 Cs) определены параметры тензора градиента электрического поля в узлах меди и бария решеток Tl₂Ba₂Ca_{n-1}Cu_nO_{2n+4} (n = 1, 2, 3), а также проведен расчет указанных параметров в приближении точечных зарядов. Согласование экспериментальных и расчетных параметров достигается, если предположить, что дырки, появляющиеся в результате понижения валентного состояния части атомов таллия, локализуются преимущественно в подрешетке кислорода, находящегося в одной плоскости с атомами меди (для решетки Tl₂Ba₂Ca₂Cu₃O₁₀ — находящегося в одной плоскости с атомами Cu(2)). Данные ЭМС 133 Ba(133 Cs) находятся в качественном согласии с предположенными моделями зарядового распределения в решетках Tl₂Ba₂Ca_{n-1}Cu_nO_{2n+4}.

Соединения Tl₂Ba₂Ca_{*n*-1}Cu_{*n*}O_{2*n*+4} (*n* = 1, 2, 3) являются материалами с высокими значениями температуры перехода в сверхпроводящее состояние T_c , поэтому проблема определения зарядовых состояний атомов в этих решетках является актуальной. В настоящей работе для определения зарядов атомов в Tl₂Ba₂Ca_{*n*-1}Cu_{*n*}O_{2*n*+4} (TlBaCaCuO) использована эмиссионная мессбауэровская спектроскопия (ЭМС) на изотопах ⁶¹Cu(⁶¹Ni) и ¹³³Ba(¹³³Cs).

Мессбауэровские источники $Tl_2Ba_2Ca_{n-1}$ ⁶¹Cu_nO_{2n+4} диффузионного готовились путем легирования \approx 120 K). образцов $Tl_2Ba_2Ca_2Cu_3O_{10}$ (2223) (T_c $Tl_2Ba_2CaCu_2O_8$ (2212) ($T_c \approx 60$ K) и $Tl_2Ba_2CuO_6$ (2201) $(T_c < 4.2 \text{ K})$ изотопом ⁶¹Cu по методике, описанной в [1]. Изотоп ¹³³Ва вводился в состав указанных соединений в процессе их синтеза. Мессбауэровские спектры ¹³³Ва(¹³³Сs) измерялись при 4.2 К с поглотителем ¹³³CsCl, а спектры ⁶¹Cu(⁶¹Ni) — при 80 К с поглотителем Ni_{0.86}V_{0.14}. Типичные спектры приведены на рис. 1, а результаты их обработки сведены в таблице (приводятся величины постоянной квадрупольного взаимодействия для зондов ⁶¹Ni²⁺ C(Ni) и ¹³³Cs⁺ C(Cs), где $C = eQU_{zz}$, еQ — квадрупольный момент ядра-зонда, U_{zz} — главная компонента тензора градиента электрического поля (ГЭП) на зонде).

Предполагалось, что в процессе диффузионного легирования материнский изотоп ⁶¹Cu занимает медные узлы решеток, при этом дочерний изотоп ⁶¹Ni также оказывается в медных узлах решетки. Поскольку в решетках (2201) и (2212) атомы меди занимают единственную позицию [2,3], ожидалось, что мессбауэровские спектры ⁶¹Cu(⁶¹Ni) будут отвечать единственному состоянию зонда ⁶¹Ni²⁺. Действительно, как видно из рис. 1, *a*, *b*, мессбауэровские спектры ⁶¹Cu(⁶¹Ni) для обеих керамик представляют собой квадрупольные мультиплеты, отвечающие единственному состоянию центра ⁶¹Ni²⁺.

Более сложный спектр ожидался для образца (2223). При обработке этого спектра мы воспользовались данными по исследованию соединений (2223) методом ЭМС ⁶⁷Cu(⁶⁷Zn) [4]: экспериментальный спектр отвечал суперпозиции трех квадрупольных мультиплетов. Поскольку в решетке (2223) атомы меди занимают две кристаллографически неэквивалентные позиции [2], два мультиплета (с отношением площадей под ними 1:2) отвечают двум состояниям мессбауэровского зонда, находящегося в позициях Cu(1) и Cu(2), а третий мультиплет (его относительная интенсивность составляла ~ 0.8) соответствует зонду в медных узлах дополнительной фазы (2212). С учетом этого была проведена обработка спектра ⁶¹Cu(⁶¹Ni) соединения (2223). На рис. 1, с показаны квадрупольные мультиплеты, отвечающие центрам ⁶¹Ni²⁺ в узлах Cu(1) и Cu(2) решетки (2223), и квадрупольный мультиплет, отвечающий центрам ⁶¹Ni²⁺ в медных узлах фазы (2212). Положение линий последнего мультиплета задавалось по спектру соединения (2212), а отношение площадей под спектрами выдерживалось как 1:2:0.8.

Зонд 133 Cs⁺ замещает узлы бария в исследованных соединениях, и, поскольку во всех решетках атомы бария

Параметры эмиссионных мессбауэровских спектров 61 Cu(61 Ni) и 133 Ba(133 Cs) соединений Tl₂Ba₂Ca_{n-1}Cu_nO_{2n+4}

		Зонд		
Соединение	Узел	⁶¹ Ni ²⁺	$^{133}Cs^{+}$	
		C(Ni), MHz	C(Cs), MHz	Γ , mm/s
Tl ₂ Ba ₂ CuO ₆	Cu	-48(3)		
	Ba		< 40	0.91(1)
Tl ₂ Ba ₂ CaCu ₂ O ₈	Cu	-43(3)		
	Ba		< 40	0.92(1)
$Tl_2Ba_2Ca_2Cu_3O_{10}$	Cu(1)	-30(5)		
	Cu(2)	-43(3)		
	Ba		< 40	0.94(1)

П р и м е ч а н и е. C(Ni), C(Cs) — постоянные квадрупольного взаимодействия для зондов ⁶¹Ni²⁺ и ¹³³Cs⁺ соответственно, Г — ширина на полувысоте экспериментального спектра ¹³³Ba(¹³³Cs); для всех центров параметр асимметрии тензора ГЭП $\eta < 0.2$.

занимают единственную позицию [2,3], мессбауэровские спектры 133 Ba(133 Cs) отвечают единственному состоянию зонда. Экспериментальные спектры представляют собой одиночные линии, ширина Γ которых имеет тенденцию к увеличению по ряду (2201)–(2212)–(2223) (см. таблицу).

Для получения информации о зарядовом распределении в решетках металлооксидов меди мы провели совместный анализ данных ЭМС на изотопах 61 Cu(61 Ni) и 67 Cu(67 Zn). В общем случае измеренная величина *С* представляет собой сумму двух членов

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R_0)W_{zz}, \qquad (1)$$

где U_{zz} , V_{zz} , W_{zz} — главные компоненты тензоров суммарного, кристаллического и валентного ГЭП, γ , R_0 — коэффициенты Штернхеймера атома-зонда.

Для зонда ⁶¹Ni²⁺ ГЭП создается как ионами кристаллической решетки, так и валентными электронами самого зонда. Для зонда ⁶¹Zn²⁺ ГЭП создается только ионами решетки. На рис. 2, *а* приведена диаграмма C(Ni)-C(Zn), построенная по измеренным методом ЭМС на изотопах ⁶¹Cu(⁶¹Ni) и ⁶⁷Cu(⁶⁷Zn) значениям постоянной квадрупольного взаимодействия для зонда ⁶¹Ni²⁺ C(Ni) и для зонда ⁶⁷Zn C(Zn) в узлах меди одних и тех же металлооксидов меди [5]. Диаграмма C(Ni)-C(Zn) на рис. 2, *а* представляет собой прямую, что, согласно соотношению (1), означает постоянство

Рис. 1. Мессбауэровские спектры 61 Cu(61 Ni) соединений (2201) (*a*), (2212) (*b*) и (2223) (*c*). Показано положение компонент квадрупольных мультиплетов, отвечающих центрам 61 Ni²⁺ в узлах меди керамик TlBaCasCuO.

Рис. 2. Диаграммы C(Ni)-C(Zn)(a) и $C(Ni)-V_{zz}(b)$ для соединений двухвалентной меди (сплошные линии). Точками представлены данные: 1 — Си в (2201), 2 — Си в (2212), 3 — Си(1) в (2223), 4 — Си(2) в (2223). Индексы A и B обозначают модели расчета V_{zz} .

валентного вклада в постоянную квадрупольного взаимодействия C(Ni). На рис. 2, *а* нанесены также данные для соединений TlBaCaCuO (величины C(Zn) взяты из [4]); из этого рисунка видно, что имеется хорошее согласие с данными для всех известных металлооксидов меди.

Дополнительную информацию можно получить из диаграммы $C(\text{Ni})-V_{zz}$ (рис. 2, b). По оси абсцисс этой диаграммы отложены рассчитанные главные компоненты тензора кристаллического ГЭП V_{zz} для позиций меди, в которых методом ЭМС ⁶¹Cu(⁶¹Ni) измерены C(Ni) [5]. Диаграмма $C(\text{Cu})-V_{zz}$ представляет собой прямую, причем возможная причина отклонения от этой прямой — неправильный расчет тензора ГЭП из-за несовершенства выбора зарядов ионов. Поэтому положение точек на диаграммах C(Ni)-C(Zn) и $C(\text{Ni})-V_{zz}$, отвечающих одинаковой позиции меди, можно использовать для отбора возможных вариантов распределения зарядов в решетках.

Мы провели расчет тензоров кристаллического ГЭП в узлах меди и бария решеток TlBaCaCuO, при этом решетка представлялась в виде суперпозиции нескольких подрешеток

$$\begin{split} & [\text{Tl}_2][\text{Ba}_2][\text{Cu}][\text{O}(1)_2][\text{O}(2)_2][\text{O}(3)_2], \\ & [\text{Tl}_2][\text{Ba}_2][\text{Ca}][\text{Cu}_2][\text{O}(1)_4][\text{O}(2)_2][\text{O}(3)_2], \\ & [\text{Tl}_2][\text{Ba}_2][\text{Ca}_2][\text{Cu}(1)][\text{Cu}(2)_2] \\ & \times [\text{O}(1)_2][\text{O}(2)_4][\text{O}(3)_2][\text{O}(4)_2]. \end{split}$$

В соединениях (2201) и (2212) атомы О(1) находятся в одной плоскости с атомами меди, а в соединении (2223) атомы O(2) находятся в одной плоскости с атомами Cu(2). При расчетах использовались структурные данные [2,3]. На рис. 2, b представлены полученные нами результаты для двух моделей расчета тензора кристаллического ГЭП. Для керамик TlBaCaCuO согласия с линейной зависимостью на диаграмме $C(Ni)-V_{77}$ не наблюдается, если расчет V_{zz} проводился в предположении стандартных зарядов ионов (Tl³⁺, Ba²⁺, Ca²⁺, Cu²⁺, O²⁻) (модели А). Очевидно, отклонения данных для всех соединений TlBaCaCuO от линейной зависимости следует объяснить несовершенством выбора модели для расчета V_{zz}. Согласование данных для систем (2201) и (2223) с линейной зависимостью на рис. 2, b может быть достигнуто, если локализовать на атомах кислорода, находящихся в плоскости Cu-O, дырки. Для керамики (2223) дырки должны быть локализованы на атомах кислорода, находящихся в одной плоскости с атомами Cu(2). Для исследованных керамик дырки могут появиться за счет стабилизации части атомов таллия в одновалентном состоянии [6]. Из рис. 2, b видно, что для моделей В, учитывающих появление дырок на атомах кислорода, наблюдается удовлетворительное согласие с линейной зависимостью (в моделях В предполагалось, что 10% атомов таллия в соединениях (2201), (2223) и 12.5% в соединении (2212) находятся в одновалентном состоянии).

Данные ЭМС ¹³³Ва(¹³³Сs) не позволяют сделать количественные заключения о параметрах тензора кристаллического ГЭП в узлах бария исследованных соединений. Однако следует подчеркнуть, что малая величина *С* и тенденция к возрастанию Г по ряду (2201)–(2212)–(2223), полученная для зонда ¹³³Сs⁺ в узлах бария, находятся в согласии с рассчитанными для узлов бария величинами V_{zz} (модели *В* для керамик (2201), (2212) и (2223) дают величины $V_{zz} = 0.01, 0.03$ и 0.07 e/Å³ соответственно).

Работа поддержана Российским фондом фундаментальных исследований (грант № 97-02-16216).

Список литературы

- [1] В.Ф. Мастеров, Ф.С. Насрединов, Ч.С. Саидов, П.П. Серегин, О.К. Щербатюк. ФТТ **34**, *7*, 2294 (1992).
- [2] K. Yvon, M. Francois. Z. Phys. 76B, 413 (1989).
- [3] A.W. Hewat, E.A. Hewat, Y. Beyhestad, H.A.Mook, E.D. Specht. Physica C152, 438 (1988).
- [4] В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин. ФТТ 38, 8, 2331 (1996).
- [5] F.S. Nasredinov, P.P. Seregin, V.F. Masterov, N.P. Seregin, O.A. Prikhodko, M.A. Sagatov. J. Phys.: Condens. Matter 7, 2339 (1995).
- [6] Ю.И. Жданов, К.Н. Михалев, Б.А. Алексашин, С.В. Верховский, К.А. Окулова, В.И. Воронин, Л.Д. Шустов, А.Ю. Якубовский, А.И. Акимов. СФХТ 3, 194 (1990).