Фононы в красном HgI_2

© С.И. Скачков, В.Г. Тютерев

Сибирский физико-технический институт при Томском государственном университете, 634050 Томск, Россия

(Поступила в Редакцию 22 сентября 1997 г.)

Проведен критический анализ имеющейся экспериментальной и теоретической информации о решеточной динамике слоистого кристалла α -HgI₂. Показано, что удовлетворительное понимание характера межатомного взаимодействия и особенностей колебательного спектра этого вещества может быть достигнуто в простой феноменологической модели с восьмью параметрами в предположении о двухфононной природе E_g/B_{1g} -вырождения рамановской линии 29 сm⁻¹.

Кристалл HgI2 является фотоактивным полупроводником с шириной запрещенной зоны в его красной модификации около 2.1 eV при комнатной температуре [1,2]. Если ранее представляло интерес изучение его оптических свойств, главным образом спектра экситонов, то в настоящее время актуальнее исследование его транспортных свойств; это вызвано перспективами использования *α*-HgI₂ в качестве рабочего вещества для рентгеновских и гамма-спектрометров высокого разрешения [2,3]. В [4] получены также данные о наблюдении фотоакустического эффекта. Одной из проблем, препятствующих широкому применению HgI₂ является довольно низкая подвижность дырок ($\sim 4\,{
m cm^2/V}\cdot{
m s}$ при комнатной температуре [5]). Ключевым аспектом для понимания причин такого поведения может явиться роль рассеяния на фононах.

Исследование колебательного спектра HgI₂ представлено в недавней работе [6], в которой 18 ветвей фононного спектра рассчитаны на основе модели жестких ионов, 27 параметров которой определялись подгонкой под данные нейтронного рассеяния [7], инфракрасного отражения [8] и комбинационного рассеяния света [9]. В целом предложенная интерпретация эксперимента представляется достаточно разумной, однако при внимательном рассмотрении обнаруживает ряд слабых мест, заслуживающих более тщательного анализа.

Прежде всего расчет фононных частот был произведен, по-видимому, без учета условий устойчивости кристалла, что явствует из результатов, приведенных в табл. 3 работы [6]. Расчетные значения скоростей звука $v(001)_{xy}$ и $v(100)_z$ существенно различаются $(0.67 \cdot 10^5$ и $1.01 \cdot 10^5$ сm/s соответственно), в то время как по симметрии в отсутствие механических напряжений они должны совпадать.

Вторая проблема касается анализа колебательных частот в окрестности 29 сm⁻¹. Из результатов расчета [6] следует наличие случайного вырождения частот с симметрией E_g и B_{1g} . Эта особенность, как представляется, не находит однозначного подтверждения в имеющемся эксперименте. В то время как большинство выполненных рамановских измерений действительно может быть истолковано с точки зрения случайного вырождения, нейтронографические данные [7] идентифицируют только невырожденную частоту B1g. Рамановские измерения [10] не обнаруживают расщепления E_g/B_{1g} с температурой и давлением. Результаты экспериментов по комбинационному рассеянию в твердом растворе $Cd_{1-x}Hg_{x}I_{2}$ [11] также не согласуются с предположением о случайном вырождении E_g/B_{1g} . Поэтому картина фононного спектра в красном HgI_2 , предложенная в [6], представляется не вполне удовлетворительной. В условиях отсутствия дополнительных экспериментальных данных, в частности, для фононных ветвей, относящихся к высокочастотной области спектра, наилучшим выходом, если не иметь, разумеется, в виду расчеты из первых принципов, может являться теоретический анализ в феноменологической модели с минимально возможным числом параметров. Преимущество такого подхода состоит в более прозрачной физической интерпретации, что способствует лучшему пониманию, хотя и за счет, быть может, некоторого снижения точности воспроизведения эксперимента. Предлагаемая нами модель жестких ионов в сочетании с моделью валентного силового поля в варианте Китинга [12,13], как представляется, позволяет физически обоснованно согласовать существующие данные эксперимента.

1. Модель межатомного силового поля

Слоистая тетрагональная структура α -HgI₂ [14] имеет группу симметрии D_{4h}^{15} и содержит шесть атомов в элементарной ячейке: с координатами иода [a/2, a/2, c/4 - uc], [0, a, c/4 + uc], [a/2, a/2, 3c/4 - uc], [0, a, 3c/4 + uc] и ртути [0, a/2, c/4], [a/2, a, 3c/4] (рис. 1). Здесь a = 4.37 Å, c = 12.44 Å, u = 0.14 — решеточные параметры.

В модели жестких ионов кулоновская часть энергии описывается взаимодействием точечных зарядов ионов, в то время как короткодействующие силы ограничены взаимодействием ближайших соседей. Для первых соседей принимается центральное взаимодействие с силовой матрицей

$$\Phi_{\alpha\beta}^{nm} = -A^{nm} \frac{R_{\alpha}^{nm} R_{\beta}^{nm}}{|R^{nm}|^2}.$$
(1)

Здесь $R_{\alpha}^{nm} = R_{\alpha}^{n} - R_{\alpha}^{m}$, где R^{n} — позиция *n*-го атома в решетке, α, β — декартовы индексы, A^{nm} — силовая

Рис. 1. Структура α-HgI₂. Номерами отмечены ионы, входящие в элементарную ячейку.

константа. В нашем случае существуют только два независимых параметра $A^{\text{Hg}-1} \equiv 3A$ и $A^{\text{I}-1} \equiv F$. Поскольку в структуре HgI₂ каждый ион Hg имеет достаточно правильное тетраэдрическое окружение из ионов I, представляется разумным принять для взаимодействия вторых соседей модель валентного силового поля в варианте Китинга [12], которая успешно применялась ранее для описания фононов в ионно-ковалентных кристаллах со структурой A^3B^5 [13]. Китинговские вклады во взаимодействие первых и вторых соседей записываются соответственно в виде

$$\Phi_{\alpha\beta}^{nm} = -\frac{3}{4|R^{nm}|^2} \sum_{k} \left\{ B_n^{mk} [R_{\alpha}^{nk} R_{\beta}^{nk} + R_{\alpha}^{nm} R_{\beta}^{nk}] + B_m^{nk} [R_{\alpha}^{mk} R_{\beta}^{mk} + R_{\alpha}^{mk} R_{\beta}^{nm}] \right\},$$

$$\Phi_{\alpha\beta}^{nm} = \frac{3}{4} \sum_{k} B_k^{nm} \frac{R_{\alpha}^{km} R_{\beta}^{km}}{|R^{nm}|^2}.$$
(2)

Здесь B_k^{nm} — силовая константа, соответствующая изменению угла между ковалентными связями с вершиной в ионе k, причем пары (kn) и (km) являются ближайшими соседями, а (nm) — вторыми. Предполагая определенную жесткость в сохранении тетраэдрической симметрии вокруг Hg, можно ограничиться только тремя независимыми угловыми константами $\beta_1 \equiv B_1^{\text{Hg-Hg}}$, $\beta \equiv B_{\text{Hg}}^{\text{I}-1}$ (оба иона иода в одной плоскости xy), $\beta_2 \equiv B_{\text{Hg}}^{\text{I}-1}$ (ионы иода в разных xy-плоскостях). Кулоновская часть динамической матрицы вычисляется стандартным методом Эвальда [15], условие электронейтральности сводит количество независимых параметров к одному: $Z_{\text{Hg}} \equiv z$, $Z_1 \equiv -z/2$.

Динамическая матрица должна быть инвариантна относительно малого поворота системы координат и удовлетворять условию отсутствия внутренних напряжений [15]. Китинговская составляющая инвариантна автоматически, в то время как электростатический вклад не удовлетворяет этим условиям, что приводит к нарушению перестановочной симметрии индексов для упругих модулей, которая в тетрагональном кристалле должна иметь вид $C_{zzxx} = C_{xxzz}$; $C_{xzxz} = C_{zxxz} = C_{xzzx}$ Упомянутое выше различие скоростей звука, имеющее место в расчете [6], по-видимому, и является следствием неучета этого обстоятельства. Для восстановления свойств инвариантности полной динамической матрицы необходимо ввести компенсирующие члены в короткодействующую часть. В простейшем варианте к матрице первых соседей добавляются диагональные члены вида $\Phi_{\alpha\beta}^{nm} = -\delta_{\alpha\beta}a_{\alpha}^{nm}$ [16]. Из шести дополнительных параметров независимыми являются только два, поскольку по симметрии $a_x^{I-1} = a_y^{I-1}$, $a_x^{Hg-Hg} = a_y^{Hg-Hg}$ и из условий инвариантности следует

$$\frac{c}{2} \left[2ua_x^{\text{Hg}-\text{I}} + (4u-1)a_x^{\text{I}-\text{I}} \right] = -\frac{ae_0^2 z^2}{v_a} \cdot 1.76445,$$

$$\frac{c^2}{2} \left[4u^2 a_x^{\text{Hg}-\text{I}} + (4u-1)^2 a_x^{\text{I}-\text{I}} \right]$$

$$-\frac{a^2}{4} \left(a_z^{\text{Hg}-\text{I}} + a_z^{\text{I}-\text{I}} \right) = \frac{a^2 e_0^2 z^2}{8\pi v_a} \cdot 31.496.$$
(3)

Здесь e_0 — заряд электрона, v_a — объем ячейки. Входящие в (3) значения первой и второй производных по волновому вектору от электростатического вклада рассчитаны методом Эвальда [15]. Матрицы самодействия $\Phi^{nm}_{\alpha\beta}$ полностью выражаются через уже введенные независимые параметры из условия трансляционной инвариантности, что завершает определение модели силового поля.

2. Результаты и обсуждение

При обсуждении далее мы используем теоретикогрупповую классификацию спектра HgI₂, приведенную в [7]. Восемь параметров теории определялись подгонкой методом наименьших квадратов под известные значения длинноволновых частот, наблюдаемых в рамановских [9,11,17–19] и ИК-экспериментах [7,8]. Результаты приведены в табл. 1 в столбце *а* и обнаруживают

Таблица 1. Частоты длинноволновых фононов в HgI₂

Crup o communa	Частота, сm $^{-1}$						
Симметрия	Эксперимент		T	Наш расчет			
фонона			теория [6]	а	b		
B_{1g}	143	[11]	148	146	143		
$A_{2u}(L)$	139.23	[8]	_	144	140		
$A_{2u}(T)$	125.29	[8]	119	131	127		
$E_u(L)$	128.99	[8]	_	122	123		
B_{2u}	-		_	100	107		
$E_u(T)$	104.84	[8]	104	111	110		
E_g	115	[11]	142	113	112		
A_{1g}	115	[11]	112	108	114		
$E_u(L)$	32.15	[8]	-	33.4	53.6		
B_{1g}	28.8	[11]	29.6	29.3	28.9		
E_g	28.8	[11]	29.4	29.4	53.4		
E_g	17.9	[11]	18.5	17.5	18.5		
$E_u(T)$	17.46	[8]	19.6	15.7	47.5		

Упругая	Экспер	оимент	Теория		
константа	[7]	[20]	а	b	
C_{11}	3.16	3.303	4.32	4.08	
C_{33}	1.526	1.634	1.70	1.69	
C_{44}	0.727	0.723	0.257	0.612	
C_{66}	0.35	0.231	0.038	0.490	
C_{12}	-	0.559	0.547	0.538	
C_{13}	-	1.168	0.544	0.485	

Таблица 2. Упругие константы HgI_2 (10¹¹ dyn/cm²)

в целом неплохое согласие с экспериментом. Следует лишь отметить расхождение в $\sim 7 \,\mathrm{cm}^{-1}$ для наиболее интенсивной в комбинационном рассеянии моды с симметрией A_{1g} . Вычисленные в этом варианте упругие модули (столбец *а* табл. 2) согласуются с экспериментом [7,20], исключая C_{13}, C_{44}, C_{66} , причем последний на порядок меньше наблюдаемого, означая слишком малую величину скорости поперечного звука [100]_у (в скобках — направление волнового вектора, индекс — поляризация).

Не будучи включенными в процедуру подгонки, дисперсионные кривые фононов вдоль [100] и [001] (рис. 2, *a*) согласуются тем не менее с экспериментом [7] и расчетной дисперсией в 27-параметрической модели [6]. Так же как и в работе [6], наряду с шестью ветвями межслоевых колебаний, наблюдающимися в нейтронном эксперименте, в нашем расчете обнаруживается появление связки двух дополнительных ветвей, проникающих в низкочастотную часть спектра и не имеющих экспериментального аналога. Отсутствие этих ветвей в эксперименте авторы работы [6] объясняют специфической формой атомных смещений, эффективно приводящей к малым сечениям рассеяния нейтронов.

Дополнительную возможность для оценки качества теории предоставляют экспериментальные данные [11] для твердого раствора Cd_xHg_{1-x}I₂. Как можно заключить из вида рассчитанных векторов поляризации, низкочастотная часть спектра HgI2 соответствует жесткому взаимному смещению слоев, поэтому для исследования концентрационной зависимости колебаний в твердом растворе оправдано приближение виртуального кристалла. Расчет (штриховые линии на рис. 3) показывает линейную зависимость от концентрации для наиболее низкочастотной моды с симметрией B_{1g}, в то время как вырожденная с ней при x = 0 мода E_g практически не меняется с концентрацией. Экспериментальные данные [11] на обнаруживают признаков такого расщепления мод E_g и B_{1g} с концентрацией, что делает сомнительным их толкование, основанное на случайном вырождении. Отметим в связи с этим, что в работе [10] не обнаружено снятия вырождения E_g/B_{1g} под воздействием давления, а также в зависимости от температуры.

В высокочастотной части спектра твердый раствор обнаруживает двухмодовое поведение, поэтому разум-

но привлечь для интерпретации эксперимента расчет частот в гипотетическом кристалле CdI₂ в структуре красного иодида ртути. Принимая те же параметры силового поля, мы получили $\omega_{B_{1g}}$ (CdI₂) = 173 cm⁻¹, ω_{E_g} (CdI₂) = 128 cm⁻¹, в хорошем согласии с наблюдаемыми значениями 168 ± 3 и 130 cm⁻¹ [11]. Поскольку полносимметричная мода A_{1g} содержит только смещения иода, соответствующая частота в твердом растворе от концентрации не зависит (108 и 115 cm⁻¹ в расчете и эксперименте [11] соответственно).

Анализ значений параметров модели (вариант подгонки *a* в табл. 3) обнаруживает малую величину силовой константы *F*, согласующуюся с представлением о ван-дер-ваальсовом характере межслоевого взаимодей-

Рис. 2. Фононный спектр α -HgI₂, рассчитанный для двух наборов параметров межатомного взаимодействия (a, b). Сплошные линии — расчет, пунктирные линии соответствуют данным нейтронографических измерений [7]. В центральной части рисунка $(\Gamma - \Gamma)$ приведена зависимость длинноволновых частот от угла θ между волновым вектором фонона и тетрагональной осью *С*.

Рис. 3. Концентрационная зависимость низкочастотных длинноволновых фононов в $Cd_xHg_{1-x}I_2$. Точки обозначают данные эксперимента [11]. Штриховые и сплошные линии соответствуют расчету в приближении виртуального кристалла в вариантах теории *a* и *b*.

A	$B_{\rm I}^{\rm Hg-Hg}$	$B_{ m Hg}^{ m I-I}$	$B_{ m Hg}^{ m I-I'}$	F	$a_x^{\mathrm{I-I}}$	$a_z^{\mathrm{I-I}}$	Z _{Hg}	Вариант подгонки
20.93	13.50	5.11	3.27	2.28	$-0.21 \\ -0.17$	0.85	0.975	a
20.14	8.53	8.53	9.41	2.10		0.90	0.990	b

Таблица 3. Параметры межатомного силового поля в HgI_2 (10³ dyn/cm) и эффективные заряды (в a.u.)

ствия [10]. Константы a_r^{I-I} и a_z^{I-I} малы, но обеспечивают равенство поперечных скоростей звука $[100]_{z}[001]_{x,y}$, как того требует симметрия кристалла. Значения заряда иона Нд близки к приведенным в [6]. Силовая константа А попадает в диапазон значений, типичных для кристаллов группы A³B⁵. Что касается угловых констант, обращает на себя внимание необычно большая по сравнению со значениями в группе A³B⁵ их величина для угла Hg-I-Hg. В то же время внутрислоевая константа $\beta_2 \equiv B_{
m Hg}^{
m I-I'}$ вдвое меньше, чем $\beta \equiv B_{
m Hg}^{
m I-I}$, что означает малую жесткость соответствующих углов и тетраэдра HgI4 в целом по отношению к напряжениям, ориентированным поперек слоя. Столь существенное различие в жесткости различных валентных углов при наличии правильной тетраэдрической координации трудно объяснить.

Мы попытались разрешить отмеченные выше противоречия, связав их с отказом от гипотезы о случайном вырождении мод ω_{E_e} и $\omega_{B_{1e}}$ при 29 сm⁻¹ путем исключения ω_{E_a} из набора подгоняемых частот. Результаты приведенные в столбце b табл. 1, обнаруживают значительно лучшее согласие с экспериментом, включая и A_{1g} , но наименьшая ω_{E_u} и вторая по величине ω_{E_e} существенно возрастают. Результатом является то, что связанная с ними пара фононных ветвей покидает охваченную нейтронографическим экспериментом область межслоевых колебаний (рис. 2, b). Количественно согласие с экспериментальной дисперсией фононов в направлении [100] несколько ухудшается, однако с качественной точки зрения картина спектра кажется даже более удовлетворительной. В то же время согласие для [001] фононных ветвей прекрасное. Напомним, что нейтронографические данные в схему метода наименьших квадратов вообще не включались. Упругие константы, также не подгонявшиеся специально, значительно лучше в этом варианте согласуются с экспериментом (столбец b табл. 2). Согласие с экспериментальной концентрационной зависимостью низкочастотных ω_{E_a} и $\omega_{B_{1g}}$ в Cd_xHg_{1-x}I₂ (сплошные прямые на рис. 3) находится на том же уровне, что и в предыдущем варианте подгонки, за исключением того, что проблема отсутствия концентрационного расщепления не встает вообще. Расчетные значения $\omega_{B_{1g}}(\text{CdI}_2) = 170 \,\text{cm}^{-1}$, $ω_{E_e}(CdI_2) = 129 \text{ cm}^{-1}, ω_{A_{1e}}(CdI_2) = 114 \text{ cm}^{-1}$ также прекрасно согласуются с экспериментом [11]. Значения центральных констант, так же как a_x^{I-I} и a_z^{I-I} в обоих вариантах (а и b) отличаются незначительно (табл. 3),

в то время как величины угловых констант сближаются между собой, попадая в область их значений для A³B⁵, что представляется более разумным, если иметь в виду сохранение тетраэдрического окружения Hg.

В этом варианте расчета фононного спектра HgI_2 существует ряд разногласий с традиционной интерпретацией, нуждающихся в объяснении. Прежде всего, плохое согласие фононных частот в точке *X* с экспериментом имеет, по-видимому, то же происхождение, что и для расчетов в китинговской модели в кристаллах A^3B^5 [13], и может быть улучшено в модели, учитывающей поляризуемость связи.

Наиболее серьезная проблема возникает с частотой 29 сm⁻¹, которая во всех рамановских экспериментах наблюдается одновременно в геометрии E_g и B_{1g} , что, собственно, и послужило основой для идеи случайного вырождения. Требуют также объяснения экспериментально наблюдаемые в E_u -геометрии LO/TO-инфракрасные частоты 18 сm⁻¹/32 сm⁻¹ [8].

В нашем расчете обнаруживается, что три фонона в точке Z имеют соответственно частоты $\omega_{Z_1} = 11 \,\mathrm{cm}^{-1}$, $\omega_{Z_2}=13\,{
m cm}^{-1},\ \omega_{Z_3}=20\,{
m cm}^{-1},$ так что двухфононные обертоны $2\omega_{Z_1},\ 2\omega_{Z_2}$ и комбинированные частоты $\omega_{Z_1} + \omega_{Z_2}, \ \omega_{Z_1} + \omega_{Z_3}, \ \omega_{Z_2} + \omega_{Z_3},$ оказываются близкими к рассчитанным однофононным частотам $\omega_{E_g} = 18 \,\mathrm{cm}^{-1}$, $\omega_{B_{1p}} = 29 \, {\rm cm}^{-1}$. Разложение прямого произведения представлений $Z_1 \otimes Z_3$ и $Z_2 \otimes Z_3$ действительно содержит как ИК-, так и КР-активные представления точки Г, для других комбинаций это не является справедливым. Заметим в связи с этим, что в условиях Ферми-резонанса двухфононных и однофононных частот применимость стандартных теоретико-групповых методов неочевидна. Поэтому представляется допустимой интерпретация традиционно трактуемых в однофононном смысле наблюдаемых $ω_{E_u}(T) = 18 \text{ cm}^{-1}, ω_{E_u}(L) = 32 \text{ cm}^{-1}, ω_{E_g} = 29 \text{ cm}^{-1}$ как проявлений в оптическом эксперименте резонанса между процессами первого и второго порядков. Интересно, что в Cd_xHg_{1-x}I₂ концентрационная зависимость низкочастотных частот Z-фононов, (следовательно, и их комбинаций) в точности повторяет таковую для Г-фононов, что объясняет причину сохранения E_g/B_{1g} -вырождения, по крайней мере в этом случае.

Косвенным свидетельством в пользу неоднофононной природы линий 18, 32, 29 сm⁻¹ может служить то, что все три эти частоты в геометрии $E_{uLO/TO}$, E_g не обнаружены в нейтронном эксперименте [7]. Не обнаружены и топологически связанные с ними по симметрии целые фононные ветви $Z_2 - \Delta_5 - E_u - \Delta_1$, Δ_2 и $Z_1 - \Delta_5 - E_g - \Delta_3$, Δ_4 (см. соотношения совместности в [7]). Сомнения в однофононной природе осциллятора 18 сm⁻¹/32 сm⁻¹ укрепляются в связи с его необычными свойствами, обнаруженными в работе [8]: почти полным отсутствием температурной зависимости коэффициента отражения, отрицательным температурным сдвигом частоты, необычно большим значением силы осциллятора, приводящим к аномально большой анизотропии низкочастотного диэлектрического тензора при умеренной анизотропии его высокочастотной части. Отмечается значительный разброс значений низкоэнергетической $\omega_{E_u}(LO, TO)$ в ИК-экспериментах других групп и необычное поведение $\omega_{E_u}(TO)$ в зависимости от давления [9,10].

Расчетная величина $\omega_{E_g} = 53 \,\mathrm{cm}^{-1}$, как кажется, не имеет соответствия в эксперименте, однако она попадает в частотную область $37-55 \,\mathrm{cm}^{-1}$, где Прево и др. [19] наблюдали особенности в рамановских спектрах, интерпретируя их с точки зрения процессов второго порядка. Расчетная полярная мода $\omega_{E_u} = 47 \,\mathrm{cm}^{-1}/54 \,\mathrm{cm}^{-1}$ имеет довольно малое продольно-поперечное расщепление (6 сm⁻¹), вследствие чего должна иметь относительно небольшую силу осциллятора и соответственно малую интенсивность в ИК-поглощении.

Хотя существующий на настоящий момент экспериментальный материал не позволяет сделать однозначный выбор между двумя интерпретациями, второй набор параметров модели кажется более предпочтительным как с точки зрения нейтронографического эксперимента и поведения фононов в твердом растворе, так и в смысле толкования характера химической связи.

Таким образом, нами выполнен расчет фононного спектра красного HgI₂ в простой модели межатомных сил с восьмью параметрами. В традиционной интерпретации экспериментально наблюдаемой частоты 29 сm⁻¹ как случайно вырожденной комбинации однофононных частот $\omega_{E_g}/\omega_{B_g}$ модель дает заниженные скорости поперечного звука, приводит к появлению двух лишних ветвей в межслоевой части фононного спектра и противоречит результатам рамановских экспериментов в $Cd_xHg_{1-x}I_2$. Мы полагаем, что двухфононная интерпретация как рамановской частоты $\omega_{E_g} = 29 \text{ cm}^{-1}$, так и низшей полярной ω_{E_u} более адекватны характеру межатомного взаимодействия в красном HgI₂.

Авторы благодарят проф. А. Анедда и Дж. Мула за постановку проблемы и обсуждение результатов.

Список литературы

- [1] Yia-Chung Chang, R.B. James. Phys. Rev. B46, 15040 (1992).
- X.J. Bao, T.E. Schisinger, R.B. James, R.H. Stulen, C. Ortale, A.Y. Cheng. J. Appl. Phys. 68, *1*, 86 (1990); X.J. Bao, T.E. Schisinger, R.B. James, G.L. Gentry, A.Y. Cheng, C. Ortale. J. Appl. Phys. 69, 8, 4247 (1991).
- [3] S.P. Swierkowski, G.A. Armantrout, R. Wichner. Appl. Phys. Lett. 23, 281 (1973).
- [4] Б.К. Кардашев, А.В. Резвушкин, П.А. Степанов, В.А. Степанов, В.М. Чернов, В.М. Залетин. ФТТ 38, 5, 1511 (1996).
- [5] R. Minder, G. Ottaviani, C. Canali. J. Phys. Chem. Sol. 37, 417 (1976).
- [6] Hock-Kee Sim, Yia-Chung Chang, R.B. James. Phys. Rev. B49, 4559 (1994).
- [7] B. Prevot, C. Schwab, B. Dorner. Phys. Stat. Sol. (b) 88, 327 (1978).
- [8] J. Biellmann, B. Prevot. Infrared Phys. 20, 99 (1980).

- [9] N. Kuroda, T. Iwabuchi, Y. Nishina. J. Phys. Soc. Jpn. 52, 2419 (1983).
- [10] N. Kuroda, M. Sakai, Y. Nishina. J. Phys. Soc. Jap. 54, 1423 (1985).
- [11] A. Anedda, G. Bongiovanni, E. Fortin. Phys. Stat. Sol. (b) 146, 757 (1988).
- [12] P.N. Keating. Phys. Rev. 145, 637 (1966).
- [13] R.M. Martin. Phys. Rev. B1, 4005 (1970).
- [14] R.W.G. Wyskoff. Crystal structures. Interscience Publishers, N.Y. (1965). V. 1. P. 309.
- [15] М. Борн, Х. Кунь. Динамическая теория кристаллических решеток. ИЛ, М. (1958).
- [16] V.G. Tyuterev, S.I. Skachkov. Nuovo Cim. 140, 1097 (1992).
- [17] V.A. Haisler, V.M. Zaletin, A.F. Kravchenko. Phys. Stat. Sol.
 (b) 125, K103 (1984).
- [18] V.A. Haisler, V.M. Zaletin, A.F. Kravchenko, G.Y. Yashin. Phys. Stat. Sol. (b) **121**, K13 (1984).
- [19] B. Prevot, J. Biellmann. Phys. Stat. Sol. (b) 95, 601 (1979).
- [20] S. Haussuhl, S.H. Scholz. Kryst. Techn. 10, 1175 (1975).