Анизотропия микротвердости и плотность атомов в элементарном объеме идентичности кристаллов

© В.Н. Гурин, М.М. Корсукова, Л.И. Деркаченко

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 20 июня 1997 г. В окончательной редакции 7 июля 1997 г.)

> Предложен новый критерий ретикулярной и полярной анизотропии микротвердости — плотность атомов в элементарном объеме идентичности, т.е. отношение числа атомов одного сорта в атомных плоскостях (плоскости), заключенных в пределах элементарного объема идентичности, к сумме площадей этих плоскостей (плоскости) с атомами одного сорта. Показано, что такая плотность атомов лантаноидов, актиноидов и бора удовлетворительно коррелирует с ретикулярной и полярной анизотропией микротвердости их тетраи гексаборидов. Этот критерий может быть использован для прогноза характера изменения ретикулярной и полярной анизотропии микротвердости и у других классов соединений.

Проблеме природы анизотропии микротвердости посвящено много исследований, однако до сих пор она все еще недостаточно изучена [1–3]. В настоящее время можно различить три наиболее общих подхода к оценке природы анизотропии: химический (или кристаллохимический), физический и структурный (или кристаллографический).

Химический подход рассматривает изменение микротвердости (прочности) вещества на различных и на одной грани кристалла в зависимости от количества и типа атомов, направленности и прочности химической связи между ними в кристаллической структуре [1]. Его трудности заключаются в экспериментальном и теоретическом получении для многих соединений точных данных о природе и прочности химической связи.

Физический подход объясняет природу анизотропии структурой решетки, первичными и вторичными процессами пластической деформации, деформационным объемом и структурами, возникающими вокруг отпечатка. Эти процессы рассматриваются на уровне коллективных решеточных явлений, и, в частности, не учитывается, атомная индивидуальность исследуемых химических соединений. Этот подход наиболее применим для материалов с высокой пластичностью [2–4]. Трудность его заключается в том, что для различных классов соединений, в особенности для тугоплавких (хрупких и малопластичных), процессы пластической деформации еще недостаточно исследованы в зависимости от температуры, величины и времени нагрузки и наличия примесей.

Структурный подход заключается в расчете плотности атомов на гранях различных простых форм [2] и установлении зависимости анизотропии микротвердости от такой плотности: чем выше ретикулярная плотность атомов (РП), тем тверже грань. Применение такого подхода связано с использованием, например, для алмаза понятия атомной плотности плоских сеток куба, ромбододекаэдра и октаэдра [5]. Это пригодно для чистых элементов, у которых все атомные плоскости во всех направлениях содержат одинаковые атомы. Однако, если речь идет о соединениях, у которых в различных кристаллографических направлениях на грани выходят атомы различных элементов, то в этом случае такой подход недостаточен и не может объяснить природу ретикулярной анизотропии. К полярной анизотропии этот подход вообще неприменим.

Однако ни в одном из вышеуказанных подходов не учитывается в явном виде роль объема структуры под гранями разных простых форм и под различными направлениями на грани одной формы.

Авторы предлагают рассматривать плотность атомов в некотором объеме кристаллической структуры, в котором бы полностью повторялся структурный мотив [2], характерный для симметрии данной структуры. При этом в разных кристаллографических направлениях такие объемы будут различными, так как в этих направлениях будут различными и структурные мотивы. Такой объем будет наиболее представительной частью любой кристаллической структуры любого элемента и соединения. Он позволит более объективно сравнивать плотности атомов элементов как на различных, так и на одной грани в различных направлениях, так как плотность атомов будет рассчитываться в одной или в серии плоскостей, заключенных в таком объеме, и будет более точно характеризовать особенности структуры. В настоящей работе приводятся расчеты предлагаемого критерия, а также экспериментальные данные по микротвердости монокристаллов гекса- и тетраборидов лантаноидов и актиноидов и модельных материалов.

1. Расчет и экспериментальные данные

В настоящей работе предлагается уточненный структурный подход к проблеме анизотропии микротвердости. С этой целью предлагается использовать два новых понятия: элементарный объем идентичности и плотность атомов в элементарном объеме идентичности.

Элементарный объем идентичности V_i — это объем в кристаллической структуре в пределах одного элементарного повторяющегося мотива, определяемого гранью простой формы и тремя элементарными трансляциями, или периодами идентичности. Он может быть установлен в любой кристаллической структуре в любом кристаллографическом направлении. Так, в кубической структуре для грани простой формы куба {100} такой объем можно определить с помощью трансляции, или периода идентичности — кратчайшего из возможных расстояний между одинаковыми точками кристаллической структуры ([7], стр. 9). В этом случае он совпадает с объемом элементарной ячейки. В общем случае такой объем для любого кристаллографического направления можно получить тремя способами ([2], стр. 11): 1) с помощью трех некомпланарных (не лежащих в одной плоскости) трансляций; 2) с помощью системы эквивалентных точек, преобразующихся друг в друга с помощью трех некомпланарных трансляций; 3) с помощью системы одинаковых параллелепипедов, плотно заполняющих пространство и совмещающихся друг с другом с помощью трех основных трансляций.

Плотность атомов в элементарном объеме идентичности ρ_{vi} — это отношение числа одинаковых атомов, находящихся в одной n_i или во всех атомных плоскостях $\sum n_i$, содержащих такие атомы и заключенных в элементарном объеме идентичности V_i , определяемом гранью простой формы данной кристаллической структуры, к площади одной S_i или всех таких плоскостей с одинаковыми атомами $\sum S_i$

$$ho_{
m vi}=n_i/S_i$$
или $\sum n_i/\sum S_i.$

Такой критерий в отличие от РП для плоскости является характеристикой объема кристаллической структуры химических соединений для грани каждой простой формы. Поэтому с его помощью можно полнее описать отклик структуры на внешнее воздействие. Будем условно рассматривать такое воздействие (например, алмазной пирамиды) лишь на атомные плоскости, заключенные в пределах V_i (при измерении ретикулярной микротвердости), или на одну плоскость, заключенную в пределах V_i (при измерении полярной микротвердости), а не в пределах реального деформационного объема, возникающего вокруг отпечатка. Для удобства расчетов примем еще одно допущение: все атомы, лежащие на ребрах или в углах грани (плоской сетки атомов), будем считать целыми (а не их долями, как это принято при подсчете РП для грани).

Корреляция рассчитанных значений ρ_{vi} с данными по микротвердости будет свидетельствовать о наличии ретикулярной (для граней разных простых форм) и полярной (для грани одной простой формы) анизотропии как характеристики, зависящей от плотности атомов того или иного элемента (или обоих) в пределах V_i .

Расчет ρ_{vi} для граней разных простых форм проводится для атомов каждого сорта из суммарной площади всех содержащих такие атомы плоскостей, заключенных в V_i и параллельных плоскости грани простой формы, ρ_{vi} которой рассчитывается.

Если ρ_{vi} находится для определенного направления на плоскости грани одной простой формы, то в этом случае площадь атомной плоскости, расположенной строго под выбранным направлением (0,45,90°) на этой грани, перпендикулярной последней и заключенной в пределах V_i , делится на число содержащихся в ней атомов одного (каждого) сорта.

1) Плотность атомов и ретикулярная анизотропия микротвердости гекса- и тетраборидов. Из рис. 1, *а* видно, что для LaB₆ сечения, проведенные параллельно граням куба и ромбододекаэдра через расположенные в пределах V_i атомы, образуют ряд параллельных плоскостей, содержащих такие атомы. Площади всех плоскостей, содержащих атомы одного сорта, суммируются, и рассчитывается ρ_{vi} как частное от деления суммарной их площади на общее число одинаковых в них атомов (см. таблицу). Как видно из расчетов ρ_{vi} для атомов металла и B, у LaB₆ грань куба должна быть тверже грани ромбододекаэдра, а у ErB₄ грань пинакоида тверже грани призмы {100}. В то же время для РП полное сравнение невозможно из-за нулевых значений РП как для атомов металла, так и для атомов В (так как их атомы в этих случаях не выходят на поверхность граней).

Таким образом, использование ρ_{vi} для выявления ретикулярной анизотропии плотности атомов в кристаллической структуре соединений (и связанных с такой плотностью свойств, например, микротвердости) по сравнению с РП является более определенным и предпочтительным. В таблице представлены экспериментальные данные по определению микротвердости по Кнупу для гекса- и тетраборидов лантаноидов и актиноидов по методике, описанной ранее [7,8].

2) Плотность атомов и полярная анизотропия микротвердости гекса- и тетраборидов. Пример расчета ρ_{vi} для различных направлений (например, 0, 45, 90°) на одной плоскости можно привести для грани ромбододекаэдра LaB₆ на основе вышеприведенного правила (при этом промежуточное направление на ней будет равно примерно 45° при ориентации длинной оси пирамиды Кнупа на угол грани, так как грань ромбододекаэдра является прямоугольником, а не квадратом). На грани ромбододекаэдра ABCD (рис. 1, b) выберем три направления: $AD(0^\circ)$, $AC(\sim 45^\circ)$ и $AB(90^\circ)$. Строго под этими направлениями и перпендикулярно им в пределах V_i находятся три фигуры (заштрихованы): ADKL (0°), ACNL (~ 45°) и ABFL (90°), площадь которых, а также число и вид заключенных в них атомов необходимо узнать. Анализ показывает, что прямоугольник ADKL содержит два атома La и два атома B, а трапеции ACNL и ABFL содержат соответственно два и три атома La и

Рис. 1. Схема кристаллической решетки LaB₆ с габитусной формой куба (*a*) и ромбододекаэдра (*b*), элементарный объем идентичности кристаллической структуры ErB₄ (*c*) и общий вид структуры тетраборидов [6] (проекция на грань пинакоида) (*d*). *a*) Жирными линиями выделен элементарный объем идентичности V_i (в этом случае он совпадает с объемом элементарной ячейки); *b*) заштрихованы плоскости, перпендикулярные трем направлениям на плоскости ромбододекаэдра (0,45,90°) и заключенные в пределах V_i , в которых определяется ρ_{vi} и измеряется полярная микротвердость. Внизу показана схема атомных слоев, параллельных граням куба {100} и ромбододекаэдра {110}; *c*) для граней пинакоида (001) и призмы (100) ρ_{vi} совпадает (для наглядности рисунок вытянут по оси *Z*). Внизу показана схема атомных слоев, параллельных грани призмы (100).

Direction			0°		45°		90°	
	N ^a		La — 4, B — 0		La — 4, B — 2			
	$ ho_{\rm vi}$ B		0		0.082			
	crystall	a, Å	H_k	$ ho_{ m vi}$	H_k	$ ho_{ m vi}$		
$LaB_{6}(LnB_{6})$	LaB ₆	4.1570	2350 ± 260	0.231	2160 ± 160	0.164		
cube,	CeB ₆	4.1396	2460 ± 220	0.233	2130 ± 130	0.165		
{100}	PrB ₆	4.1327	2460 ± 210	0.234	2220 ± 120	0.166		
	NdB ₆	4.1266	2460 ± 190	0.235	2050 ± 120	0.166		
	SmB_6	4.1334	2120 ± 190	0.234	1950 ± 120	0.166		
	EuB ₆	4.1844	2330 ± 200	0.228	2100 ± 120	0.162		
	YbB ₆	4.1468	2330 ± 200	0.233	2200 ± 130	0.164		
	ThB_6	4.1108	1830 ± 70	0.237	1710 ± 60	0.167		
	N ^a		La - 2B - 2		Ia - 2B - 0		La - 3 B - 0	
	$\rho_{\rm vi}$ B		0.164		0		0	
$LaB_{6}(LnB_{6})$	crystall		H_k	$ ho_{ m vi}$	H_k	$ ho_{ m vi}$	H_k	$ ho_{ m vi}$
rhombodo-	La	B ₆	1950 ± 120	0.164	1740 ± 100	0.126	2070 ± 120	0.231
decahedron,	SmB_6		1500 ± 90	0.166	1740 ± 100	0.127	1600 ± 90	0.234
{110}	$\{110\}$ YbB ₆ , $P = 50$ g		1850 ± 70	0.165	1700 ± 70	0.127	1990 ± 80	0.233
	N ^a		Er — 0, B — 4		Er — 0, B — 6		-	
	$ ho_{ m vi}~{ m B}$		0.080		0.150		-	
	crystall		H_k	$ ho_{ m vi}{ m B}$	H_k	$ ho_{ m vi}{ m B}$		
$ErB_4(LnB_4)$	ErB_4		1790 ± 130	0.080	2140 ± 110	0.150		
pinac,	pinac, SmB ₄		2710 ± 150	0.078	1950 ± 110	0.145		
$\{001\}$	GdB_4		1740 ± 130	0.078	2190 ± 120	0.147		
	TbB_4		1830 ± 140	0.079	2220 ± 120	0.148		
	DyB_4		2140 ± 160	0.081	2050 ± 110	0.152		
	HoB ₄		2070 ± 150	0.080	1600 ± 80	0.149		
	UB_4		2260 ± 110	0.080	2190 ± 130	0.151		
	N^a		Er — 4, B — 0		Er — 2, B — 2		Er — 0, B	— 4
	$ ho_{ m vi}{ m B}$		0		0.035		0.080	
	crystall		H_k	$ ho_{ m vi}$	H_k	$ ho_{ m vi}{ m B}$	H_k	$ ho_{ m vi}{ m B}$
$ErB_4(LnB_4)$	ErB ₄		2570 ± 150	0.141	2800 ± 170	0.035	2330 ± 140	0.080
prism,	prism, SmB ₄		2530 ± 150	0.137	2700 ± 160	0.034	2140 ± 130	0.078
{100}	GdB ₄		2480 ± 150	0.138	2520 ± 150	0.034	2200 ± 130	0.078
	TbB_4		2050 ± 120	0.139	2580 ± 150	0.034	1950 ± 110	0.079
	DyB_4		1910 ± 100	0.143	2220 ± 120	0.035	1740 ± 90	0.081
	HoB ₄		2500 ± 150	0.141	2720 ± 160	0.035	2050 ± 120	0.080
	TmB_4		2280 ± 130	0.142	2420 ± 140	0.035	1950 ± 110	0.080
	LuB_4		2150 ± 120	0.143	2200 ± 130	0.035	1950 ± 110	0.081
	ThB_4		2050 ± 120	0.134	2140 ± 130	0.033	1740 ± 100	0.076

Плотность атомов (atom/Å²) металла ρ_{vi} и бора ρ_{vi} В в пределах V_i и микротвердость H_k (kg/mm², P = 20 g) в различных направлениях на различных гранях монокристаллов LaB₆ и ErB₄, а также других гекса- и тетраборидов

П р и м е ч а н и е. Чистота всех соединений не менее 99 mass.%. N^a — число атомов в плоскостях, параллельных исследуемой грани и заключенных в пределах V_i . Заметим, что для граней куба и пинакоида направления 0 и 90° эквивалентны.

не содержат атомов В. Рассчитав площади этих фигур, можно определить ρ_{vi} атомов La и В для всех трех направлений (см. таблицу). Необходимо отметить, что плоскость *ACNL* проходит вблизи двух (по крайней мере) атомов бора, заключенных в пределах V_i . Все данные расчетов ρ_{vi} для LaB₆ и ErB₄ приведены в таблице, где они сопоставлены с экспериментальными данными по микротвердости H_k .

2. Обсуждение результатов

Сравнение ρ_{vi} как для разных граней, так и для различных направлений на одной грани можно проводить для каждого сорта атомов в отдельности, если значение ρ_{vi} во всех случаях не равно нулю. Если же $\rho_{vi} = 0$ для одного сорта атомов, то в этом случае следует сравнивать значения ρ_{vi} атомов разного сорта. Для объяснения

ретикулярной анизотропии микротвердости сравним ρ_{vi} и H_k для разных граней у LaB₆ и ErB₄, представленные в таблице. Естественно, что такое сравнение можно проводить по какому-либо одному направлению на грани. Это приводит к заключению, что сравнение монокристаллов соединений по величине микротвердости на различных или на одной грани целесообразно лишь при наличии данных для сравниваемых граней по определенному направлению (например, 0, 45, 90°). В противном случае можно говорить лишь о некоем усредненном значении микротвердости монокристаллов.

Из таблицы следует, что у LaB₆ грань куба тверже грани ромбододекаэдра, чему соответствует как ход расчетных данных $\rho_{\rm vi}$, так и характер изменения $H_{\rm k}$. Аналогично изменяется *H*_k и у других гексаборидов (разность для всех соединений составляет $2-3\sigma$). Значения *H*_k в различных направлениях на грани куба у всех гексаборидов также коррелируют с величинами $\rho_{\rm vi}$ для атомов металла (разность составляет $< 1-2\sigma$). Для грани ромбододекаэдра такая корреляция наблюдается у двух ($\sigma \approx 2-4$) из трех исследованных гексаборидов, а отсутствие данных для остальных гексаборидов связано с отсутствием у них этой грани или же с несовершенством поверхности и очень малой ее площадью. Таким образом, и ретикулярная и полярная анизотропия микротвердости гексаборидов хорошо описываются предложенным критерием $\rho_{\rm vi}$.

У ErB₄ рассчитанная величина ρ_{vi} показывает, что пинакоид {001} должен быть тверже призмы {100} в направлении $\sim 45^\circ$, иметь примерно одинаковую $H_{\rm k}$ в направлении 90° и быть мягче в направлении 0° (см. таблицу). Однако H_k в направлении $\sim 45^\circ$ на пинакоиде у всех тетраборидов меньше, чем у призмы (разность составляет 1.5–5 σ). В направлении 0° пинакоид действительно мягче призмы (исключение составляют SmB4 и DyB₄, разность $\approx 1.5\sigma$), а в направлении 90° у трех соединений пинакоид мягче (разность $\approx 1-2\sigma$) и у трех тверже призмы (разность у двух $\approx 2\sigma$, а у HoB₄ значения практически совпадают). Это противоречие легко снимается, если учесть возможность ошибки в установлении простой формы (пинакоида или призмы) на очень малых образцах ($< 0.2 \,\mathrm{mm}$). Разброс данных в направлении 90° можно объяснить несовершенством поверхности граней исследованных образцов. Таким образом, объяснение ретикулярной анизотропии микротвердости тетраборидов с помощью ρ_{vi} представляется удовлетворительным.

Что касается полярной анизотропии, то для пинакоида у тетраборидов наблюдается как максимум (три соединения), так и минимум (четыре соединения) H_k в направлении 45°, хотя ρ_{vi} для В имеет здесь максимум ($\rho_{vi} = 0$ для Er). Можно предположить, что при неточной ориентации длинной диагонали пирамиды Кнупа возникает возможность отклонения плоскости, в направлении которой она воздействует, от плоскости, содержащей максимальное количество атомов В. При этом такое отклонение, судя по большему количеству тетраборидов, имеющих минимум H_k в направлении ~ 45°, является скорее неизбежным, чем вероятным (рис. 1, *d*).

В случае призмы все без исключения тетрабориды (в том числе и при различных нагрузках [7]) имеют максимум $H_{\rm k}$ в направлении $\sim 45^\circ$ и $ho_{
m vi} > 0$ для атомов Er и B, хотя по абсолютной величине эти значения меньше, чем значения $\rho_{\rm vi}$ для 0° (только Er) и для 90° (только В). Объяснить такой максимум можно тем, что плоскость в направлении $\sim 45^\circ$ содержит по крайней мере два атома В и два атома металла (анализ, проведенный авторами, показывает весьма близкое расположение двух атомов В и двух атомов металла к плоскости, которая перпендикулярна этому направлению и грани призмы и по которой происходит измерение микротвердости) (рис. 1, c, d). Кроме того, эта плоскость перпендикулярна также "торцам" сеток из атомов В, образованных "основаниями" борных октаэдров и связующих их атомами В (рис. 1, *d*). В этих случаях пирамида Кнупа "встречает" многие химические связи между атомами В, направленные перпендикулярно ее движению. Более того, этому движению перпендикулярны также "торцы" плоскостей с атомами металла. Все это сказывается на совершенстве этой грани кристалла, которая для некоторых тетраборидов имеет, по наблюдениям авторов, явную "штриховку" (отдельность, спайность, слоистость и другие проявления деформационных процессов в материале).

Можно отметить, что с учетом вышеизложенного характер изменения ρ_{vi} для всех направлений на призме соответствует характеру изменения H_k .

Таким образом, предложенный критерий — ρ_{vi} — и условия его применения помогают объяснять и прогнозировать изменения микротвердости как на различных, так и на одной грани монокристаллов тугоплавких боридов.

У всех гекса- и тетраборидов лантаноидов и актиноидов изменение ρ_{vi} будет происходить в соответствии с изменением периодов решетки каждого соединения [9] (см. таблицу). Можно также отметить, что ρ_{vi} в изоструктурных рядах соединений не является "чувствительным" параметром, так как, несмотря на заметные различия в периодах решетки, ρ_{vi} имеет одинаковые значения для нескольких соединений (см. таблицу).

Для проверки возможности применения предложенного критерия к соединениям с другим (например, ионным) типом связи авторы измерили H_k для NaCl и LiF (a = 5.64 и 4.03 Å) во всех трех направлениях для граней куба (LiF), ромбододекаэдра и октаэдра и рассчитали для них ρ_{vi} и РП для каждого сорта атомов (рис. 2). Измерения микротвердости проводились по стандартной методике [8]. NaCl (97.8; Mg — 1.5; I — 0.5 mass.%) и LiF (99.99 mass.%) были выбраны как модельные материалы в связи с различным характером полярной анизотропии микротвердости [2-4,10,11]. Сравнение расчетных данных $\rho_{\rm vi}$ и $H_{\rm k}$ ($\sigma \leqslant 3\%$) для всех граней у NaCl показывает хорошую корреляцию. Например, для грани октаэдра (рис. 2): 0° ($\rho_{\rm vi}$ для Na — 0.205, $H_{\rm k}$ — 35 kg/mm²), 45° (0.108, 32), 90° (0.211, 36). Значения

Рис. 2. Элементарный объем идентичности NaCl для грани простой формы октаэдра {111}. Заштрихованы плоскости, перпендикулярные направлениям $(0, 45, 90^\circ)$, для определения ρ_{vi} .

 $\rho_{\rm vi}$ для Cl в меньшей степени соответствуют экспериментальным данным. Такая картина наблюдается при данном выборе элементарной ячейки NaCl (с атомами Na в вершинах куба). Однако такой выбор является произвольным, и атомы Na могут быть заменены атомами Cl. Другая картина наблюдается в случае гексаборидов, где экспериментально подтвержден [12] выход атомов La на грань куба (100) у LaB₆. Что касается LiF, то полярная анизотропия, в частности, для куба здесь очень мала и результаты на свежих сколах при малых нагрузках (P = 5 и 20 g) и временах индентирования согласуются с данными [3,4]. Однако на старых сколах и при больших нагрузках (P = 200 g) наблюдается изменение характера анизотропии. Поэтому LiF является особым материалом, требующим специального исследования.

Таким образом, предложенный новый критерий может быть использован для объяснения и прогноза ретикулярной и, в особенности, полярной анизотропии микротвердости у соединений с различным типом химической связи.

Элементарный объем идентичности и плотность атомов в его пределах являются новыми объективными структурными характеристиками твердого состояния любых элементов и соединений.

Ретикулярная и полярная анизотропия микротвердости гекса- и тетраборидов лантаноидов и актиноидов, а также NaCl и LiF могут быть объяснены изменением атомной плотности в пределах мотива кристаллической структуры — элементарного объема идентичности.

В заключение авторы считают своим приятным долгом выразить глубокую благодарность С.П. Никанорову за плодотворные дискуссии, а также признательность В.М. Крымову, О.В. Клявину и Ю.М. Чернову за помощь в работе и дискуссии.

Список литературы

- [1] А.С. Поваренных. Твердость минералов. Изд-во АН УССР, Киев (1963). 304 с.
- [2] М.П. Шаскольская. Кристаллография. Высш. шк., М. (1976). 392 с.
- [3] Ю.С. Боярская, Д.З. Грабко, М.С. Кац. Физика процессов микроиндентирования. Штиинца, Кишинев (1986). 294 с.
- [4] С.П. Никаноров. Докт. дис. ФТИ им. А.Ф. Иоффе РАН, Л. (1976).
- [5] И.И. Шафрановский. Алмазы. Наука, М.-Л. (1964). С. 148.
- [6] G. Will, W. Schäfer, F. Pfeiffer, F. Elf, J. Etourneau. J. Less-Comm. Met. 82, 349 (1981).
- [7] В.Н. Гурин, Л.И. Деркаченко, М.М. Корсукова, С.П. Никаноров, В. Юнг, Р. Мюллер. ФТТ 38, 9, 2750 (1996).
- [8] Б.В. Мотт. Испытание на твердость микровдавливанием. Гостехиздат, М. (1960). 338 с.
- [9] Т.И. Серебрякова, В.А. Неронов, П.Д. Пешев. Высокотемпературные бориды. Металлургия (Челяб. отд-ние), М. (1991). С. 12, 148.
- [10] А.А. Воробьев. Механические и тепловые свойства щелочно-галоидных монокристаллов. Высш. шк., М. (1968). 270 с.
- [11] Б.И. Смирнов. Дислокационная структура и упорядочение кристаллов. Наука, Л. (1981). 233 с.
- [12] R.E. Watson, M.L. Perlman. Surf. Sci. 122, 371 (1982).