Исследования структуры дефектов в кристаллах In₄Se₃ методом малоуглового рассеяния нейтронов

© В.М. Гарамус*,**, Я.П. Пилат**, В.П. Савчин**, А.Х. Исламов*

* Объединенный институт ядерных исследований, 141980 Дубна, Московская обл., Россия ** Львовский государственный университет им. И.Я. Франко, 290000 Львов, Украина

(Поступила в Редакцию 23 июня 1997 г.)

С помощью метода малоуглового рассеяния нейтронов исследован слоистый полупроводник In_4Se_3 . Обнаружено присутствие в образцах неоднородностей коллоидного размера, что объясняется выпадением индия. Отжиг приводит к уменьшению концентрации неоднородностей. Моделирование системы ансамблем первичных неоднородностей сферической формы показало, что в одном кластере прямоугольной сверхрешетки (2–2–6) находятся 24 первичных неоднородности радиуса 13.5 ± 1.5 Å и расстояние между ними составляет 70.9 ± 1.5 Å.

1. In₄Se₃ — слоистый полупроводник (a = 15.296 Å, b = 12.308 Å, c = 4.0806 Å, пространственная группа *Pnnm*), который имеет характерные особенности по сравнению с другими слоистыми кристаллами. Главной из этих особенностей является экспериментально доказанное наличие одномерного беспорядка, который, возможно, реализуется вследствие наложения некоторой псевдоструктуры на основную структуру решетки [1,2].

Особенности строения кристалла и способность к разупорядочению проявляются в анизотропии кинетических, оптических и фотоэлектронных свойств в широком температурном интервале. Обнаружен широкий спектр локализованных состояний, существование которых связывается с наличием дефектов структуры и динамическим разупорядочением.

Дефекты при значительных концентрациях могут существенно влиять на фононный и электронный спектры полупроводников. Из анализа динамики изменения подвижности для легированных индием монокристаллов In₄Se₃ после отжига [3,4] делается вывод о возможности формирования цилиндрических дефектов, ориентированных вдоль оси с. Предполагается, что такого типа дефекты возникают вследствие уменьшения максимальной растворимости индия и выпадения его на структурных дефектах решетки и между слоями In₄Se₃. Анизотропия внутреннего поля в кристаллической решетке In₄Se₃ может приводить к особенностям в распределении структурных дефектов [5,6]. При нарушении оптимальных условий роста в *n*-In₄Se₃ появляются области внедрений, количество которых уменьшается после отжига в вакууме. Для кристаллов *p*-In₄Se₃ характерна блоковая структура, которая не изменяется при отжиге. Однако плотность протяженных дефектов в *p*-In₄Se₃ значительно меньше, чем в кристаллах *п*-типа проводимости.

В настоящей работе методом малоуглового рассеяния нейтронов (МУРН) проведены исследования структуры дефектов в образцах In₄Se₃, а также характера их распределения.

2. Известно [7], что наличие в монокристаллической матрице отдельных точечных дефектов не вносит вклада

в малоугловое рассеяние. При большей концентрации дефектов можно регистрировать флуктуации плотности дефектов за счет контраста относительно кристаллической матрицы. Сам факт наличия малоуглового рассеяния свидетельствует о существовании в образце неоднородностей коллоидного диапазона и дает возможность оценить масштабы неоднородностей без использования модельных представлений.

Нами проведены измерения спектров малоуглового рассеяния нейтронов на монокристаллических образцах In_4Se_3 , а тажке на мелкодисперсном порошке. Монокристаллы In_4Se_3 выращивались методом Чохральского; монокристаллические образцы получались скалыванием тонких пластин различной толщины (0.5–2.0 mm) вдоль плоскости естественного скалывания (100). Данные кристаллы характеризуются *n*-типом проводимости с концентрацией носителей $5 \cdot 10^{15}$ cm⁻³.

Измерения проводились на малоугловом спектрометре нейтронного рассеяния "ЮМО" импульсного реактора ИБР-2 Лаборатории нейтронной физики им. И.М. Франка Объединенного института ядерных исследований (Дубна, Россия). Диапазон используемых длин волн нейтронов составлял от 0.7 до 4 Å, что давало возможность регистрировать сечения нейтронного рассеяния в интервале векторов рассеяния от 0.01 до 0.3 Å⁻³. Определение абсолютных величин сечений рассеяния проводилось с помощью стандартного рассеивателя — металлического ванадия. Ошибка измерений дифференциальных сечений нейтронного рассеяния не превышала 5% [8].

Во всех исследованных образцах наблюдалось малоугловое рассеяние нейтронов. Наличие минимума $(q \approx 0.05 \text{ Å}^{-1})$ свидетельствует об узком распределении неоднородностей по размерам (рис. 1). Исходя из соотношения [7]

$$q_{\min}R = \pi, \tag{1}$$

получаем величину *R*, равную 120 Å. Здесь *R* — радиус неоднородности, $q = 4\pi \sin \theta / \lambda$ — вектор рассеяния, 2θ — угол рассеяния, λ — длина волны нейтрона.

Рис. 1. Зависимость дифференциального сечения нейтронного рассеяния полупроводниками In₄Se₃ от вектора рассеяния. *1* — исходное состояние кристалла, *2* — после термической обработки.

Рис. 2. Зависимость дифференциального сечения нейтронного рассеяния порошками In₄Se₃ от вектора рассеяния.

Максимум на кривой рассеяния можно интерпретировать как интерференцию рассеяния отдельных неоднородностей. В данном случае следует рассматривать скопление точечных дефектов (кластеры). В [3,4] выдвинута гипотеза о возможности выпадения индия в межслоевую область и структурных дефектах решетки. В настоящее время другого объяснения физической природы дефектов не существует.

После отжига образцов в вакууме при температуре 350°С в течение 12 h характер кривых рассеяния практически не меняется, только значительно уменьшается интенсивность рассеяния (рис. 1). Данные свидетельству-

ют об уменьшении концентрации дефектов и некотором увеличении их средних размеров. Оценка интенсивности рассеяния для образцов после отжига и без отжига дает уменьшение концентрации кластеров дефектов приблизительно в 2.5 раза. Полученные результаты согласуются с данными электрофизических исследований, в которых обнаружено существенное уменьшение концентрации носителей заряда и концентрации локализованных состояний [6].

Общий вид кривой нейтронного рассеяния порошком In₄Se₃ отражает характерные особенности для монокристаллического образца In₄Se₃ (рис. 2), однако минимум и максимум менее выражены. Аппроксимация Гинье [7] дифференциального сечения рассеяния нейтронов $d\Sigma(q)/d\Omega$ проведена для начального участка кривой рассеяния

$$d\Sigma(q)/d\Omega = d\Sigma(0)/d\Omega \exp(-q^2 R_g^2/3), \qquad (2)$$

где R_g — радиус инерции рассеивающей плотности частицы (радиус гирации),

$$R_g^2 = \int_V (\rho(r) - \rho_s) r^2 dv \Big/ \int_V (\rho(r) - \rho_s) dv.$$
(3)

где $\rho(r)$ — распределение плотности нейтронного рассеяния в частице, ρ_s — средняя рассеивающая плотность растворителя (в данном случае кристаллической матрицы), $d\Sigma(0)/d\Omega$ — рассеяние в нулевой угол,

$$d\Sigma(0)/d\Omega = n(\rho - \rho_s)^2 V^2, \qquad (4)$$

n — концентрация неоднородностей, V — объем неоднородности. Полученное значение радиуса инерции равно 100 Å при систематической ошибке 15% [7].

Необходимо отметить, что при измерении спектров МУРН для порошкообразных образцов получается информация, усредненная по всем ориентациям кристаллитов, а в случае кристаллических образцов существует возможность наблюдать кривую рассеяния, которая производит усреднение только в плоскости, перпендикулярной пучку. Сравнение кривых рассеяния порошкообразным и кристаллическим образцам открывает возможность получения информации об анизотропии ориентации кластеров дефектов в кристаллическом In₄Se₃. Можно утверждать, что в монокристаллическом In₄Se₃ существует определенная псевдоструктура, которая образуется кластерами дефектов, на что указывалось в [3].

Исходя из соображений возможности выпадения индия в межплоскостную область в образцах In₄Se₃, а также учитывая наличие максимума, который можно интерпретировать как интерференцию в рассеянии неоднородностей, мы провели моделирование данной системы ансамблем первичных неоднородностей сферической формы, которые формируют сверхрешетку. Для расчета интенсивности рассеяния использовалась формула Дебая, которая для случая системы шаров одинакового

Рис. 3. Моделирование нейтронного рассеяния образцом In₄Se₃ с помощью прямоугольной надрешетки первичных неоднородностей (сплошная линия).

радиуса *R* записывается в следующем виде [9]:

$$d\Sigma(q)/d\Omega = nF^2(qR) \left[1 + \frac{2}{n} \sum_{j=i+1}^n \frac{\sin qr_{ij}}{qr_{ij}} \right], \quad (5)$$

где $F^2(qR)$ — рассеяние однородным шаром радиуса R, n — количество шаров, r_{ij} — расстояние между центрами двух шаров.

Наилучшее соответствие (рис. 3) получено методом наименьших квадратов для следующих параметров: решетка 2–2–6, ридус первичных неоднородностей — 13.5±1.5 Å, расстояние между ними — 70.9±1.5 Å. Следовательно, согласно нашим данным, в одном кластере сверхрешетки находятся 24 первичных неоднородности. Нормализованный χ^2 равен 1.1. Радиус инерции модельной структуры составляет 110 Å.

Таким образом, в работе получены следующие результаты.

Методом МУРН в кристаллах In₄Se₃ обнаружены кластеры дефектов, которые характеризуются узким распределением по размерам.

Отжиг образцов в вакууме при температуре 350°C в течение 12 h приводит к уменьшению концентрации дефектов приблизительно в 2.5 раза. Размер кластеров дефектов при этом меняется незначительно.

Путем моделирования системы ансамблем первичных неоднородностей сферической формы установлено, что в одном кластере прямоугольной сверхрешетки (2–2–6) находятся 24 первичных неоднородности радиуса 13.5 ± 1.5 Å и расстояние между ними составляет 70.9 ± 1.5 Å.

Результаты малоугловых исследований указывают на наличие дальнего порядка в положении кластеров дефектов в кристаллическом In₄Se₃, т.е. на существование определенной псевдоструктуры, которая может быть объектом дальнейших исследований.

Список литературы

- [1] U. Schwarz, H. Hillebrecht. Z. Krist. 210, 5, 342 (1995).
- [2] О.И. Бодак, Ю.М. Орищин, В.П. Савчин, Й.М. Стахира. Кристаллография 25, 3, 628 (1980).
- 3] И.М. Стахира, П.Г. Ксьондзик. УФЖ 26, 5, 762 (1981).
- [4] Д.М. Берча, О.Б. Митин, Л.Ю. Хархалис, А.И. Берча. ФТТ 37, 11, 3233 (1995).
- [5] В.Я. Курячий, Г.Ю. Богачев, В.П. Михальченко, И.М. Стахира. Деп. в УкрНИИНТИ 15.08.84, рег. № 14.14к-84. Черновцы (1984). 11 с.
- [6] Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов. Кристаллография, рентгенография и электронная микроскопия. Наука, М. (1982). 631 с.
- [7] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. М. (1986). 260 с.
- [8] Yu.M. Ostanevich. Makromol. Chem. Macromol Symp. 15, 91 (1988).
- [9] Ю.А. Рольбин, Р.Л. Каюшина, Л.А. Фейгин, Б.М. Щедрин. Кристаллография **18**, 701 (1973).