Изучение методом ЭПР локальных флуктуаций вблизи сегнетоэлектрического фазового перехода в кристаллах Li₂Ge₇O₁₅: Mn²⁺

© М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин, Т.Л. Кузьменко

Днепропетровский государственный университет, 320625 Днепропетровск, Украина

(Поступила в Редакцию 6 июня 1997 г.)

В температурном интервале, включающем точку сегнетоэлектрического фазового перехода ($\Phi\Pi$) кристаллов гептагерманата лития Li₂Ge₇O₁₅ (ГГЛ), исследованы спектры ЭПР ионов Mn²⁺. Проведено измерение температурно-ориентационных зависимостей ширины и формы линий ЭПР. Показано, что критическое уширение резонансных линий, наблюдающееся в окрестности $\Phi\Pi$, обусловлено флуктуациями локального параметра порядка с частотами ниже 10⁷ Hz.

Кристаллы ГГЛ претерпевают сегнетоэлектрический ФП при $T_C = 283.5 \text{ K}$ из высокотемпературной параэлектрической фазы (пространственная группа D_{2h}^{14}) в сегнетофазу (группа $C_{2\nu}^5$) с возникновением спонтанной поляризации вдоль оси с [1–3].

В данной работе нами продолжено изучение ЭПР центров Mn^{2+} (0.06%, 0.2% wt.) в кристаллах ГГЛ, предварительные результаты которого были опубликованы ранее [4,5]. В [5] сообщалось, что вблизи T_C наблюдается значительное уширение и кроссовер формы резонансных линий от контура, близкого к лоренциану, к "чистому" гауссиану. Было сделано предположение, что наблюдаемые эффекты являются следствием замедления динамики локального параметра порядка. Вместе с тем, неоднородное уширение линий магнитного резонанса в окрестности ФП может быть вызвано и другими причинами, например, взаимодействием примесей с локальным параметром порядка [6]. Поэтому вывод о характере флуктуационного вклада в ширину и форму линий ЭПР требует дополнительных исследований.

Трансформацию спектров ЭПР ионов Mn²⁺ при переходе парафаза–сегнетофаза можно описать при помощи спин–гамильтониана (СГ) [7]

$$\mathcal{H}_{FP} = \mathcal{H}_{PP} + \tilde{\mathcal{H}} = \left\{ g eta H + \sum b_n^m O_n^m
ight\} + \sum ilde{b}_n^m O_n^m$$

В работе [4] был проведен расчет параметров b_n^m СГ \mathcal{H}_{PP} в парафазе и показано, что локальная симметрия Mn^{2+} в T_C понижается от моноклинной C_2 до триклинной C_1 . Параметры СГ \tilde{H} , понижающего симметрию при ФП, являются функциями локального параметра порядка $\tilde{b}_n^m(\eta)$ и в окрестности T_C могут быть разложены в ряд по степеням η . При этом разложения моноклинных параметров \tilde{b}_n^m будут содержать только четные, а триклинных любые степени η .

Из сказанного следует, что для произвольных ориентаций внешнего магнитного поля **H** относительно кристаллографических осей резонансные поля, при которых наблюдается поглощение СВЧ-мощности, можно разложить в ряд по степеням локального параметра порядка

$$H_R = H_0 + A\eta + B\eta^2 + \dots, \tag{1}$$

где H_0 соответствует положению линии в парафазе, а $\eta(t) = \langle \eta \rangle = \delta \eta(t)$ представим в виде суммы статической $\langle \eta \rangle$ и зависящей от времени $\delta \eta(t)$ частей. Коэффициенты разложения $A(\theta, \varphi)$, $B(\theta, \varphi)$ зависят от ориентации внешнего поля относительно осей кристалла, причем A определяется триклинными, а B — моноклинными параметрами b_n^m . Для случая линейной связи ($B \sim 0$) резонансных полей с параметром порядка в [6,8] было показано, что вклад флуктуаций $\delta \eta$ в ширину линии ЭПР может быть получен в аналитическом виде для двух предельных случаев. Если флуктуации являются быстрыми в сравнении с характерными частотами ЭПР эксперимента, имеет место динамический режим и критический вклад вблизи T_C^+ может быть записан как

$$\delta H_{CR} \sim A^2(\theta, \varphi) k_B T |T - T_C/T_C|^{-\nu}, \qquad (2)$$

где k_B — постоянная Больцмана, ν — критический индекс корреляционной длины. Если флуктуации могут рассматриваться как статические в масштабе времен ЭПР, критический вклад в ширину представим в виде

$$(\delta H_{CR})^2 \sim A^2(\theta, \varphi) k_B T \left\{ 1 - \text{const} |T - T_C/T_C|^\nu \right\}.$$
(3)

Согласно (2,3), в точке ФП температурное поведение δH_{CR} в предельных случаях различно: в динамическом режиме (2) δH_{CR} расходится, а в статическом (3) — принимает конечное значение. Отсутствие точных данных о величинах критических индексов зачастую не позволяет однозначно разграничить интервалы применимости рассматриваемых приближений на основе рассмотрения температурно-зависимых частей выражений (2,3). Как было показано авторами [6], определить, какой из режимов реализуется в эксперименте, возможно при изучении ориентационных зависимостей критической ширины: в динамическом пределе $\delta H_{CR} \sim A^2(\theta, \varphi)$, тогда как в статическом случае $\delta H_{CR} \sim A(\theta, \varphi)$.

Поэтому нами было предпринято изучение ориентационно-температурных зависимостей ширины

Рис. 1. Угловые зависимости ширины сверхтонкой компоненты $m_j = -5/2$, $M_S = -3/2 \leftrightarrow -5/2$ для различных температур. $I - T_C + 39.8$ К, $2 - T_C + 14.2$ К, $3 - T_C + 3.7$ К, $4 - T_C + 1.2$ К, $5 - T_C + 0.4$ К, $6 - T_C + 0.1$ К. $T_C = 283.8$ К. $\theta = \angle$ Hb, H \perp c. На вставке — угловые зависимости положения линии в парафазе при T = 284.1 К (сплошная линия) и расщепленных компонент в сегнетофазе при T = 273.2 К (штриховые линии).

и формы сверхтонкой компоненты $m_j = -5/2$ высокополевого электронного перехода $M_S = -3/2 \leftrightarrow -5/2$ для температур выше T_C . Регистрация спектров ЭПР осуществлялась в X-диапазоне на радиоспектрометре Radiopan SE/X 2547. Нагрев и охлаждение проводились в парах азота при помощи стандартного криостата, позволившего стабилизировать температуру образцов с точностью не хуже ± 0.02 K в окрестности T_C .

На рис. 1 представлены угловые зависимости ширины, определяемой как расстояние между экстремумами производной линии поглощения при отклонении поля **H** от оси **b** в кристаллографической плоскости (**a**, **b**). Проведение измерений оказалось возможным для интервала θ : $0-20^\circ$, так как для бо́лыших углов анализ спектров осложнялся наложением сверхтонких секстетов, соответствующих электронным переходам $M_S = -3/2 \leftrightarrow -5/2$ и $M_S = -1/2 \leftrightarrow -3/2$. Из рис. 1 видно, что приближение к точке ФП сопровождается уширением резонансной линии, величина которого существенно зависит от угла θ . На вставке к рис. 1 изображены также угловые зависимости положения изучаемой линии выше T_C и двух расщепленных компонент, наблюдаемых ниже точки ФП в результате возникновения ненулевого значения локального параметра порядка $\pm \langle \eta \rangle$. Непосредственная корреляция анизотропии ширины линии при T_C^+ с угловой зависимостью величины расщепления линии ниже $T_C~(\Delta H~\sim~\langle\eta
angle)$ прямо указывает, что уширение линии ЭПР в окрестности ФП определяется флуктуациями локального параметра порядка. Как видно из рис. 1, анизотропия критического вклада в ширину линии отражает симметрию полярной фазы еще до перехода при $T > T_C$.

Сопоставление приведенных на рис. 1 данных ясно показывает, что при **H** \parallel **b** заметного уширения вблизи T_C^+ не наблюдается и расщепление линии ниже T_C

Рис. 2. Угловые зависимости гауссовой (a) и лоренцевой (b) составляющих ширины линии для различных температур. Обозначение кривых (1-6) то же, что и на рис. 1.

Рис. 3. Зависимость критического вклада в ширину ЭПР-линии от параметра связи A для различных температур. $1 - T_C + 3.7$ К, $2 - T_C + 1.2$ К, $3 - T_C + 0.4$ К, $4 - T_C + 0.1$ К.

отсутствует. При отклонении от главной ориентации возрастание критического уширения при T_C^+ и величины доменного расщепления при $T < T_C$ становится все более значительным. Такое поведение измеряемых величин вполне понятно, так как отсутствие расщепления в сегнетофазе при **H** || **b** свидетельствует, что коэффициент $A(\theta = 0) = 0$ и связь резонансных полей с локальным параметром порядка (1) будет определяться членом $B\eta^2$. Малая величина уширения при T_C^+ для главной ориентации указывает, что флуктуационным вкладом от квадратичного члена в (1) можно пренебречь и при анализе экспериментальных результатов использовать выражения (2, 3).

Надо отметить, что форма резонансной линии также зависит от температуры и угла θ . Поэтому для выделения критического вклада в ширину δH_{CR} было осуществлено компьютерное моделирование экспериментального контура линии в виде свертки лоренциана с гауссианом

$$F(H) = \int L(H - H_C/\delta H_L)G(H_C - H_0/\delta H_G)dH_C,$$

где H_0 определяет центр линии, а параметры подгонки δH_L , δH_G — однородный и неоднородный вклады в ширину соответственно. Результаты расчетов, полученные методом наименьших средних квадратов, представлены на рис. 2. Видно, что лоренцева ширина δH_L от температуры практически не зависит и критическое уширение линии вблизи T_C определяется возрастанием неоднородной гауссовой компоненты δH_0 . Таким образом, вклад

в критическую ширину можно выделить при помощи соотношения

$$\delta H_{CR}^2(\theta,T) = \delta H_C^2(\theta,T) - \delta H_G^2(\theta,T^* = 323.6\,\mathrm{K}).$$

Здесь гауссова ширина $\delta H_G(\theta, T^*)$ предполагается фоновой, так как при $T^* = T_C + 39.8$ К заметных эффектов уширения не наблюдается для всего изученного интервала углов θ .

Определение $A(\theta)$ возможно путем непосредственного измерения величины доменного расщепления (вставка к рис. 1). Из разложения (1) видно, что возникновение $\langle \eta \rangle \neq 0$ T_C ниже приводит расщеплению линий, величина которого к $\Delta H(heta) = H_{RI}(heta, +\langle \eta \rangle) - H_{R2}(heta, -\langle \eta \rangle) = 2A(heta)\langle \eta
angle$ непосредственно отражает угловую зависимость параметра связи $A(\theta)$.

На рис. 3 представлены зависимости критической ширины δH_{CR} от A. Хотя по мере удаления от T_C погрешность при определении δH_{CR} возрастает, можно сказать, что линейная связь $\delta H_{CR} \sim A$ является более предпочтительной, чем квадратичная, для всех приведенных зависимостей. Таким образом, исходя из соотношений (2), (3) можно полагать, что во всем температурном интервале, в котором наблюдается уширение линии ЭПР, реализуется статический режим. Это означает, что уширение обусловлено флуктуациями локального параметра порядка с частотами более низкими, чем частотный аналог ширины резонансной линии. В качестве разрешающей способности ЭПР-эксперимента может быть принято фоновое значение $\delta H_G(T^*) \sim 0.35 \,\mathrm{mT.}$ Следовательно, характерные частоты флуктцаций, приводящих к возрастанию неоднородной составляющей ширины линии, должны быть ниже 10⁷ Hz. Сопоставляя приведенные результаты с данными субмиллиметровой и рамановской спектроскопии [9,10], можно связать наблюдающее в ЭПР уширение линий с наличием центрального пика в колебательном спектре ГГЛ.

Список литературы

- H. Volenkle, F. Wittman, H. Nowotny. Monatsh. Chem. 101, 46 (1970).
- [2] S. Haussuhl, F. Wallrafen, K. Recker, J. Eckstein. Z. Cristallogr. 153, 329 (1980).
- [3] M. Wada, Y. Ishibashi. J. Phys. Soc. Jap. 52, 9, 193 (1983).
- [4] М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин. Кристаллография 36, 6, 1472 (1991).
- [5] М.П. Трубицын, М.Д. Волнянский, А.Ю. Кудзин, Б. Ашим. ФТТ 34, 6, 1746 (1992).
- [6] G.E. Reiter, W. Berlinger, K.A. Muller, P. Heller. Phys. Rev. B21, 1, 1 (1980).
- [7] А.С. Альтшуллер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). 672 с.
- [8] Th. Waldkirch, K.A. Muller, W. Berlinger. Phys. Rev. B7, 13, 1052 (1973).
- [9] A. Volkov, G. Kozlov, Yu. Goncharov, M. Wada, A. Sawada, Y. Ishibashi. J. Phys. Soc. Jap. 54, 5, 818 (1985).
- [10] Y. Morioka, M. Wada, A. Sawada. J. Phys. Soc. Jap. 57, 9, 3198 (1988).