07 Угловой момент импульса полей маломодового волокна: I. Возмущенный оптический вихрь

© А.В. Воляр, Т.А. Фадеева

Симферопольский государственный университет

Поступило в Редакцию 25 марта 1997 г.

Приведены результаты исследований физической природы электродинамического момента импульса устойчивого CV_{+1}^+ вихря в маломодовом волокне. Показано, что угловой момент импульса CV_{+1}^+ вихря можно условно разделить на орибтальный и спиновый моменты.

Продольная компонента основной HE_{11}^+ моды на оси волокна имеет чисто винтовую дислокацию с топологическим зарядом e = +1. Продольная компонента CV_1^+ вихря также на оси волокна имеет чисто винтовую дислокацию с топологическим зарядом l = +2. Поэтому возмущение CV_{+1}^+ вихря полем основной HE_{11}^+ моды приводит к снятию вырождения чисто винтовых дислокаций продольной и поперечной компонент поля и нарушению структурной устойчивости CV_{+1}^+ вихря. В результате этого индуцируется дополнительный азимутальный поток энергии с угловым моментом, противоположным моменту основного потока. Приводится аналогия линий тока возмущенного CV вихря с линиями тока невязкой жидкости, обтекающей вращающийся цилиндр. Исследования эволюции CV вихрей в параболическом волокне показали их структурную устойчивость под действием возмущающего поля HE_{11}^+ моды нарушает структурную устойчивость вихря.

Найдено, что распространение циркулярно поляризованного CV вихря представляется как ввинчивание геликоидального волнового фронта в среду волокна. Распространение линейно поляризованного вихря свободного пространства характеризуется поступательным перемещением (без вращения) геликоидального волнового фронта.

Физическая природа оптических вихрей в маломодовых волокнах неразрывно связана с азимутальными потоками энергии этих полей, а следовательно с моментом импульса волнового поля. В общих чертах проблема момента импульса **М** электромагнитного поля на квантовом

74

уровне была затронута еще в работах [1,2]. Однако интерес к этому явлению возрос только в последние годы в связи с изучением свойств оптических вихрей в свободном пространстве [3] с целью их использования в оптических ловушках микрочастиц и оптических пинцетах [4].

На наш взгляд, проблема переноса углового момента импульса в оптических волокнах имеет два аспекта: 1) электродинамическую задачу формирования и преобразования момента импульса световых волн волокна; 2) квантово-механическую задачу трансформации момента импульса направляемых полей волокна в механический угловой момент микрочастиц [5].

В настоящей работе мы рассмотрим только первую часть этой проблемы: свойства углового момента импульса поля устойчивого CV вихря в маломодовом волокне при его возмущении циркулярно поляризованным полем HE₁₁ моды.

1. Обычно при возбуждении устойчивого CV_{+1}^+ вихря в маломодовом волокне [6] одновременно возбуждается правоциркулярно поляризованная HE_{11}^+ мода. Поле этой моды возмущает поле вихря и изменяет локализацию чисто винтовых дислокаций. В отличие от полей в свободном пространстве CV вихрь и HE_{11} мода содержат продольные компоненты электрического E_z и магнитного H_z полей. Причем E_z и H_z компоненты этих полей на оси волокна (R = 0) имеют чисто винтовые дислокации. Поэтому процесс возмущения CV вихря HE_{11} модой сводится к изучению взаимодействия сингулярностей поперечных и продольных полей. Пусть в оптическом волокне возбуждаются правоциркулярно поляризованные Cl_{+1}^+ вихрь с топологическим зарядом e = 1 и He_{11}^+ мода. Выражения для электрического поля e_t можно записать в виде [7,8]:

$$\mathbf{e} = \mathbf{e}(\mathrm{CV}_{+1}^+) + a\mathbf{e}(\mathrm{HE}_{11}^+):$$

$$\mathbf{e}_{t} = \hat{e}^{+} \Big(F_{1}(R) \exp\left\{ i(\phi + \beta_{1}^{1}z) \right\} + aE_{0}(R) \exp\left\{ i\beta_{0}z \right\} \Big), \tag{1}$$

$$\mathbf{e}_{z} = i \frac{\sqrt{2\Delta}}{V} \Big(G_{1}^{-}(R) \exp\left\{ i(2\phi + \beta_{1}^{1}z) \right\} + aG_{0}(R) \exp\left\{ i(\phi + \beta_{0}z) \right\} \Big), \quad (2)$$

где *a* — относительный вес HE_{11} моды, $\hat{\mathbf{e}}^+$ — орт правоциркулярной поляризации, $F_1(R)$ и $F_0(R)$ — радиальные функции поперечных полей [7], β_1^1 , β_0 — постоянные распространения CV_{+1}^+ и HE_{11}^+ полей соответственно.

Из выражения (2) следует, что \mathbf{e}_z компонента CV_{+1}^+ вихря переносит топологический заряд e = +2, а HE_{11}^+ моды — топологический заряд e = +1. Положение нулей \mathbf{e}_t и e_z полей определим из условия [9] $\mathrm{Re}(\mathbf{e}) = \mathrm{Im}(\mathbf{e}) = 0$. Для полей (1) и (2) азимутальные координаты положения чисто винтовых дислокаций e_t и e_z полей одинаковы и равны

$$\phi = \pi + (\beta_0 - \beta_1)z. \tag{3}$$

Радиальные координаты этих дислокаций различны и являются решением уравнений

$$F_1(R) - aF_0(R) = 0, (4)$$

$$G_1^-(R) - aG_0(R) = 0. (5)$$

Из (3)–(5) следует, что дислокации поля лежат н окружностях с радиусами $R_0 = 0$, R_1 и R_2 и вращаются со скоростью $w = d\phi/dz = \beta_0 - \beta_1$. Для ступенчатого волокна с радиусом сердцевины $\rho_0 = 3.5\mu$ m и волноводным параметром V = 3.6 скорость движения дислокаций составляет $w = 1.38 \cdot 10^4 \text{ m}^{-1}$. В прямом физическом эксперименте регистрируется только дислокация \mathbf{e}_t компоненты поля с координатой $R = R_1$, поскольку наблюдаемой величиной является $\mathbf{P}_z = \text{Re}(e_x h_y - e_y h_x)$ — компонента вектора Пойтинга. Способ измерения дислокации \mathbf{e}_z компоненты мы проанализируем отдельно.

2. Рассмотрим эволюцию углового момента импульса **M** возмущенного CV_{+1}^+ вихря. Электродинамический угловой момент итмпульса **M** можно определить согласно формуле [1]:

$$\mathbf{M} = \mathbf{r} \times \mathbf{P},\tag{6}$$

где

$$\mathbf{P} = \varepsilon_0 \mu_0 (\mathbf{e} \times \mathbf{h}^* + \mathbf{e}^* \times \mathbf{h})/2 \tag{7}$$

вектор Пойтинга. На основании работы [7] запишем компоненты магнитного поля $h \operatorname{CV}_{+1}^+$ вихря и HE_{11}^+ моды в виде:

$$\mathbf{h} = -in_{co}(\varepsilon_0/\mu_0)^{1/2}\mathbf{e}.$$
(8)

Тогда, подставляя поля (1), (2), (8) в выражение (7), находим компоненты потока энергии возмущенного CV_{+1}^+ вихря в маломодовом волокне:

$$P_{\phi} = -2K \Big\{ F_1 G_1^- + a^2 F_0 G_0 + a (F_0 G_1^- + F_1 G_0) \cos(\phi - wz) \Big\}, \qquad (9)$$

$$P_r = 2Ka(F_0G_1^- - F_1G_0)\sin(\phi - wz), \tag{10}$$

$$K = 1/(2c^2)n_{co}(\varepsilon_0/\mu_0)^{1/2}(\sqrt{2\Delta}V).$$
(11)

Из выражения (9) легко определить *z* компоненту углового момента **M** как

$$\mathbf{M}_{z} = \rho \mathbf{P}_{\psi},\tag{12}$$

где ρ — текущий радиус поперечного сечения волокна. Линии тока векторного поля **Р** в волокне определим из уравнений [10]:

$$\frac{dx}{P_x} = \frac{dy}{P_y}, \quad \frac{dy}{P_y} = \frac{dz}{P_z},$$
(13)

Особые точки картины линий тока в поперечном сечении волокна находятся из условий

$$\mathbf{P}_{\phi} = \mathbf{P}_r = \mathbf{0},\tag{14}$$

откуда следует:

$$(F_1 - aF_0)(G_1^- - aG_0) = 0.$$
(15)

Уравнение (15) показывает, что таких особенностей будет три: при $R = R_1$ — положение дислокации \mathbf{e}_t -компоненты и $R = 0, R = R_2$ положение дислокаций е_z-компоненты, а уравнение (15) является комбинацией (4) и (5). Точка R = 0 соответствует центру основного азимутального потока; точка $R = R_1$ — особая точка типа седло, в которой пересекаются ветви сепаратрисы и в которой локализуется чисто винтовая дислокация \mathbf{e}_i компоненты поля. В точке $R = R_2$ располагается центр индуцированного вихря. Поскольку при отсутствии возмущения (a = 0) особые точки поля вырождены в точке типа центр, а при действии возмущения ($a \neq 0$) рождаются три особые точки, то CV₊₁ вихрь является структурно неустойчивым [11] по отношению к действию возмущения правоциркулярно поляризованной НЕ₁₁ моды. Для ступенчатого волокна, параметры котороего даны выше, картина силовых линий поперечного вектора Пойтинга **Р**_t приведена на рис. 1 при некоторых значениях параметра возмущения а. Для CV вихря в параболическом волокие $\mathbf{P}_r = 0$ во всей области поперечного сечения, и $R_1 = R_2$. В этом случае картина линий тока P_t представляет собой концентрические кольца с центром в R = 0, совпадающая с картиной линий тока без возмущения (рис. 1, a). Поэтому CV_{+1}^+ вихрь параболического волокна является структурно устойчивым по

Рис. 1. Линии тока вектора Пойтинга \mathbf{P}_t в поперечном сечении волокна $\delta\beta_{21}z = \pi/4$: a - a = 0, b - a = 0.5, c - a = 0.7, d — окрестность индуцированного вихря, a = 0.5. Серым цветом обозначена сердцевина волокна.

отношению к возмущению HF_{11}^+ модой. В ступенчатом волокне по мере возрастания параметра возмущения *a* растет область локализации индуцированного азимутального потока противоположного знака (рис. 1, *b*, *c*). Особо отметим, что линии тока индуцированного вихря по своим формальным признакам аналогичны линиям тока, возникающим при обтекании невязкой жидкостью вращающегося цилиндра [12].

Рис. 2. Распределение в поперечном сечении волокна $\delta\beta_{21}z = \pi/4$: $a - \mathbf{P}_z$, $b - \mathbf{P}_r$, $c - \mathbf{P}_{\phi}$, d — линии уровня модуля поперечного потока \mathbf{P}_t в окрестности индуцированного вихря (приведена нормированная величина $\mathbf{P}_t/\mathbf{P}_{t_{(max)}}$).

На рис. 2 представлены картины распределения энергии в \mathbf{P}_{z} , \mathbf{P}_{ϕ} и \mathbf{P}_{r} потоках для ступенчатого волокна при соответствующих значениях параметра возмущения a.

Численный расчет показывает, что отношение абсолютных величин интегрального потока $\alpha = |\mathbf{P}_t|/|\mathbf{P}_z| = 4.32 \cdot 10^{-2}$ для ступенчатого волокна и $\alpha = 4.88 \cdot 10^{-2}$ для градиентного волокна. С ростом возмущения доля азимутального потока снижается, так при $a = 0.5 \alpha = 3.7 \cdot 10^{-2}$ и

достигает насыщения $\alpha = 2.58 \cdot 10^{-2}$ при a > 8. Можно показать, что возмущение CV^+_{+1} вихря левоциркулярно поляризованной He^-_{11} модой не снимает вырождения особых точек и поле вихря остается структурно устойчивым к действию возмущения. Исследования возмущения CV^-_{-1} вихря HF_{11} модой дали идентичные результаты.

Проекция момента импульса невозмущеннного CV_{+1}^+ вихря на ось *z* записывается как $M_z = -2K\rho F_1 G_1^-$. Выражая функцию G_1^- через F_1 , согласно [7], находим:

$$M_z = -2K\rho \left(\frac{1}{2}\frac{dF_1^2}{dR} - \frac{F_1^2}{R}\right).$$
 (16)

 CV_{+1}^+ вихрь имеет правоциркулярную поляризацию \hat{e}^+ и переносит топологический заряд e = +1. Как циркулярной поляризации вихря, так и его топологическому заряду соответствует некоторый угловой момент. Согласно работе [3], угловой момент вихря в свободном пространстве можно разделить на орбитальный момент M_e , связанный с величиной топологичекого заряда e, и спиновой момент M_s , связанный с циркулярной поляризацией. Сравнивая выражение (16) с выражением (10) работы [3], можно для маломодового волокна условно разделить момент импульса на спиновую часть (первый член в (16)) и орбитальную часть (второй член в (16)).

Распространение циркулярно поляризованных CV вихрей представляется как вкручивание по правилу винта геликоидального волнового фронта в сердцевину волокна. Для линейно поляризованных вихрей свободного пространства характерно поступательное перемещение (без вращения) геликоида волнового фронта.

Список литературы

- [1] Соколов А.А. Введение в квантовую электродинамику. М.: ГИФМЛ, 1958. 536 с.
- [2] Гайтлер В. Квантовая теория излучения. М.: ИЛ, 1956. 492 с.
- [3] Allen L., Beijersbergen M.W., Spreeuw R.J.C. // Phys. Rev. A. 1992. V. 45. N 11. P. 8185–8189.
- [4] He H., Heckenmberg N.R., Rubinsztein-Dunlop H. // J. Mod. Opt. 1995. V. 42. N 1. P. 217–223.
- [5] He H., Friese M.E., Heckenber N.R. // Phys. Rev. Lett. 1996. V. 75. N 5.
 P. P. 826–829.

- [6] Воляр А.В., Фадеева Т.А. // Письма в ЖТФ. Т. 22. В. 17. С. 69-74.
- [7] Снайдер А., Лав Дж. Теория оптических волноводов. М.: Радио и связь, 1987. 656 c.
- [8] Воляр А.В., Фадеева Т.А. // Письма в ЖТФ. Т. 22. В. 8. С. 63-67.
- [9] Basistiy I.V., Bazhenov V.Yu., Soskin M.S., Vasnetsov M.V. // Opt. Comm. 1993. V. 103. P. 422-428.
- [10] Зельдович Я.Б., Мышкис А.Д. Элементы прикладной математики. М.: Наука, 1965. 616 с.
- [11] Постон Е., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 607 c.
- [12] Жермен П. Механика сплошных сред. М.: Мир, 1965. 253 с.