05.2;07;12

О новой возможности раздельного измерения мнимой и действительной частей нелинейной оптической восприимчивости 3-го порядка изначально изотропных сред

© И.И. Ганчеренок

Белорусский государственный университет, Минск

Поступило в Редакцию 23 января 1997 г.

Теоретически показана новая возможность раздельного измерения мнимой и действительной частей кубической оптической восприимчивости (так же как и измерения ее фазы) изотропных резонансных сред. Выводы теории находятся в хорошем соответствии с недавно полученными экспериментальными данными.

Интерес к поиску новых способов измерения кубической оптической восприимчивости изотропных сред сохраняется до настоящего времени [1]. Причем речь, как правило, не идет об определении абсолютного значения кубической оптической восприимчивости, а ставится цель раздельного измерения мнимой и действительной частей либо эффективной (комбинация компонент $\hat{\chi}^{(3)}$), либо отдельных компонент тензора кубической оптической восприимчивости. Интерес представляет также одновременная реализация возможности исследования дисперсии Im и Re кубической оптической восприимчивости. В настоящем письме мы сообщаем о новом способе исследования $\hat{\chi}^{(3)}$ в условиях, когда известные методы не работают.

Поскольку в качестве экспериментального подтверждения наших теоретических выводов мы будем использовать результаты недавней работы [2], где исследовалась наведенная анизотропия раствора красителя, то ограничим наше рассмотрение случаем наиболеее типичного для таких сред возбуждения линейно поляризованным светом. Тогда общий алгоритм теоретического анализа может быть построен следующим образом.

14

1. Для системы "бигармоническое излучение (накачка-опрос)изначально изотропная поляризационно-чувствительная среда" эволюция векторной амплитуды зондирующей волны может быть описана следующим образом:

$$\frac{d\mathbf{E}_1}{dz} = \left(a\hat{S} - \frac{\sigma_1}{2}\hat{I}\right) \mathbf{E}_1 = \hat{N}\mathbf{E}_1,\tag{1}$$

где все входящие в (1) параметры расшифрованы в нашей работе [3], так же как и границы применимости (1).

2. Следуя формализму дифференциальной матрицы распространения (\hat{N}) Аззама и Башары [4], для уравнения, описывающего поведение состояния поляризации, имеем

$$\frac{d\chi_1}{dz} = a\Delta\lambda\chi_1,\tag{2}$$

где $\Delta \lambda = \lambda_{-} - \lambda_{+}$, λ_{i} — собственные значения эрмитового тензора светоиндуцированной анизотропии \hat{S} [3], $\chi_{1} = E_{1v}/E_{1u}$ — комплексная переменная, определяющая поляризацию пробной волны в произвольном базисе векторов **u** и **v**.

3. В декартовом базисе тензор \hat{S} становится диагональным. Примем поляризацию волны накачки вдоль оси X и рассчитаем поляризационные изменения пробной волны при прохождении через среду, начальная изотропность которой нарушена возбуждающим излучением. Дальнейший анализ возможен в самом общем случае эллиптически поляризованной пробной волны (в настоящей работе мы не будем рассматривать возможную поляризационную некогерентность взаимодействующих волн), однако окончательные выражения для азимута (θ_1) и эллиптичности (η_1) весьма громоздки и не поддаются аналитическому анализу. Поэтому мы ограничим здесь наше рассмотрение наиболее часто реализуемым в эксперименте случаем линейно и циркулярно поляризованного зондирующего пучка, заметив при этом, что случай эллиптически поляризованной параллельно либо перпендикулярно оси X, проанализирован в [3].

1. Линейно поляризованный пробный пучок ($\chi_{10} = \text{tg}\,\theta_{10}$, индекс "0" обозначает значение параметра, характеризующего волну на входе в среду). Тогда индуцированное вращение плоскости поляризации

 $(\Delta \theta = \theta_{10} - \theta_1)$ и эллиптичность зондирующей волны определяются как

$$\Delta \theta_1 = \frac{1}{2} \operatorname{arctg} \left(\frac{\operatorname{tg} 2\theta_{10} - a_1}{1 + a_1 \operatorname{tg} 2\theta_{10}} \right), \tag{3}$$

$$\eta_1 = \operatorname{tg}\left(\frac{1}{2}\,\operatorname{arcsin}b_1\right),\tag{4}$$

$$a_1 = \frac{2 \operatorname{Re} \chi_1}{1 - |\chi_1|^2}, \tag{5}$$

$$b_1 = \frac{2 \operatorname{Im} \chi_1}{1 + |\chi_1|^2}.$$
 (6)

Далее удобно провести численный анализ (3)–(4), опять же по причине достаточной громоздкости выражений для $\Delta \theta_1$ и η_1 при расшифровке

Input Azimuth of Linearly Polarized Pump

Рис. 1. Теоретические зависимости нормализованных светоиндуцированных эллиптичности (---) и угла поворота плоскости поляризации (—) пробной волны от ее входного азимута. Интенсивность излучения накачки рассматривается как параметр, а мнимая и действительная части $\chi^{(3)}_{eff}$ предполагаются равными.

всех параметров. На рис. 1 представлены азимутальные зависимости $\Delta \theta_1$ и η_1 для различных уровней интенсивности накачки (I). Оба рисунка показывают, что оптимальный входной азимут поляризации пробной волны для наблюдения максимальных поляризационных изменений отличается от известного в литературе значения $\pi/4$ [5], и это отличие возрастает с увеличением интенсивности излучения накачки. Более того, значения θ_{10} , при которых $\Delta \theta_1(\theta_{\Delta \theta})$ и $\eta_1(\theta_n)$ максимальны, не совпадают, т.е. $\theta_{\Lambda\theta} \neq \theta_n.$ Более того, индуцированная эллиптичность является более "чувствительным" параметром в смысле большей асимметрии зависимости $\Delta \theta_n(\theta_{10})$ в сравнении с $\theta_{\Delta \theta}(\theta_{10})$. Далее, как следует из выражений (3) и (4) с учетом (2)-(6), светоиндуцированные линейные дихроизм (~ $\operatorname{Im}(\chi_{1122} + \chi_{1212}) = \operatorname{Im}\chi_{eff}^{(3)}$) и двулучепреломление $(\sim {\rm Re}\,\chi^{(3)}_{eff})$ как дают вклад во вращение плоскости поляризации, так и участвуют в формировании эллиптической поляризации. Однако при достаточно слабом возбуждении действительная и мнимая части могут быть измерены раздельно, так как в этом случае $\Delta \theta_1$ определяется Im $\chi^{(3)}_{eff}$, а η_1 – Re $\chi^{(3)}_{eff}$. Относительно простые расчеты приводят к следующим результатам:

$$\operatorname{tg} \theta_{\eta} = \pm \exp(-\Delta\lambda \operatorname{Re} A(z)), \qquad (7)$$

$$\eta_{1\max} = \pm \operatorname{tg}\left(\frac{1}{2}\Delta\lambda\operatorname{Im}A(z)\right),$$
(8)

$$\Delta \theta_1)_{\theta_{10}=\theta_{\eta}} = \pm \frac{1}{2} \operatorname{arctg} \Big[\operatorname{sh} \big(\Delta \lambda \operatorname{Re} A(z) \big) \Big], \tag{9}$$

где A(z) определено в [3] и пропорционально I.

(

Таким образом, измеряя θ_{η} и $\eta_{1 \text{ max}}$, мы получаем возможность раздельного определения действительной и мнимой частей эффективной кубической оптической восприимчивости. Более того, соотношение (9) дает возможность проведения контрольных измерений для Im $\chi_{eff}^{(3)}$. Аналогичные результаты, по-видимому, следует ожидать и из измерений $\theta_{\Delta\theta}$ и соответствующих поляризационных изменений плобной волны. В этом случае, однако, необходимо решить алгебраическое уравнение шестой степени.

2. Циркулярно поляризованный пробный пучок.

Здесь $\chi_{10} = \pm i$, где знак "+" соответствует правой, а "-" — левой круговой поляризации зонда, которая в обоих случаях трансформируется

Рис. 2. Азимутальные зависимости светоиндуцированного угла поворота плоскости поляризации для различных значений интенсивности излучения накачки и sgn $(\chi_{eff}^{(3)})$, различающих дихроизм поглощения и усиления.

в эллиптическую. Следует подчеркнуть, что эффект поляризационной деформации достаточно слаб и проявляется лишь в приближении, квадратичном по интенсивности волны накачки. Тогда

$$\operatorname{tg} 2\theta_1 = \mp \frac{\operatorname{Re} \chi_{eff}^{(3)}}{\operatorname{Im} \chi_{eff}^{(3)}},\tag{10}$$

$$\sin 2\varepsilon_1 = \pm \left[1 - \left(\Delta \lambda \operatorname{Re} A(z) \right)^2 - \frac{1}{2} \Delta \lambda^2 |A(z)|^2 \right].$$
(11)

(2)

Таким образом, измерив азимут эллипса поляризации пробного пучка на выходе исследуемой среды, мы можем провести определение фазы комплексной кубической оптической восприимчивости. Этот метод представляется более предпочтительным с позиций высокой чувствительности эллипсометрических измерений в сравнении с известной

техникой [6]. Отметим также предложенный недавно для аналогичных целей прецезионный метод модуляционно-поляризационной спектроскопии [7].

В заключение данного сообщения отметим достаточно хорошее качественное соответствие полученных нами теоретических результатов экспериментальным данным из работы [2]. В то же время отметим, что "сглаживание" экспериментальных значений, проведенное в [2], вряд ли можно считать обоснованным без привлечения конкретной теоретической модели, указания экспериментальных погрешностей и статистической оценки непротиворечивости теоретической зависимости экспериментальным результатам. Принципиально важным является также выбор длины волны зондирующего излучения по отношению к разнесенным, как правило, полосам поглощения и флуоресценции. Дихроизм поглощения и усиления по-разному "вращают" плоскость поляризации (рис. 2). С другой стороны, данные работы [2] по зависимости светоиндуцированных поляризационных изменений пробного пучка от интенсивности излучения накачки частично противоречат результатам [8-10], что является существенной мотивацией (так же как и недавно экспериментально обнаруженная [11] немонотонность в зависимости от *l* светоиндуцированного угла поворота плоскости поляризации пробной волны, предсказанная нами в [9]) для продолжения теоретических исследований в данном направлении.

Данная работа была частично поддержана в рамках NATO International Scientific Exchange Programmes–Collaborative Research Grant.

Автор выражает признательность доктору Т. Дрейеру (Physikalisch-Chemisches Institute, Heidelberg, Germany) и членам его научной группы за гостеприимство во время его пребывания в Германии и за полезные дискуссии в области нелинейной поляризационной спектроскопии.

Список литературы

- [1] Tang N., Partanen J.P. // Opt. Lett. 1996. V. 21. N 15. P. 1108-1110.
- [2] Пикулик Л.Г., Рудик К.И., Чернявский В.А. в др. // ЖПС. 1996. Т. 63. № 2. С. 242–248.
- [3] Gancheryonok I.I. // Rev. Laser Eng. 1992. V. 20. N 7. P. 502-513.
- [4] Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. М.: Мир, 1981. 584 с.

- [5] Lessing H.E., Von Jena J. Laser Handbook. Amsterdam: North-Holland Publ. Comp. 1986. P. 793.796.
- [6] Ma N., Acioli L.H., Gomes A.S.L. et al. // Opt. Lett. 1991. V. 16. N 9. P. 630-632.
- [7] Куликовская О.А. Нелинейная модуляционно-поляризационная спектроскопия сред на основе бактериородопсина. Автореф. дис. ... канд. физ.-мат. наук. Черновцы, 1996. 16 с.; *Taranenko V.B., Bazhenov V.Yu., Kulikovskaya O.A.* // Pure Appl. Opt. 1996. V. 5. P. 731–745.
- [8] Курасбедиани А.И., Мумладзе В.В. Оптоэлектроника, квантовая электроника и прикладная оптика. Тбилиси: Мецниереба, 1980. С. 122–128.
- [9] Gaisyonok V.A., Gancheryonok I.I., Zhavrid P.G. // Tech. Digest of the 15th Int. Conference on Coherent and Nonlinear Optics. St. Petersburg, Russia. 1995. V. 1. P. 431–432.
- [10] Ганчеренок И.И., Жаврид П.Г., Гайсенок В.А. // Тез. докл. II Межд. конф. по лазерной физике и спектроскопии. Гродно, Беларусь, 1995. С. 25–26.
- [11] Joseph J., Aranda F.J., Rao D.V.G.L.N. et al. // Opt. Lett. 1996. V. 21. N 18. P. 1499–1501.