Морфология стабилизированных естественных граней твердого раствора CdS_{1-x}Se_x

© Н.Р. Григорьева*, Р.В. Григорьев*, Б.В. Новиков*, А.В. Анкудинов**, М.С. Дунаевский**, А.Н. Титков**, Д. Хирш***, Й. Ленцнер****, В.Ф. Агекян*,*****, Т. Комацу****

* Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия
** Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия
*** Institute of Surface Modification, D-04318 Leipzig, Germany
*****Leipzig University, 04103 Leipzig, Germany
***** Osaka City University, Sugimoto-cho, Sumiyshi-ku, 558 Osaka, Japan
E-mail: N.Grigorieva@pobox.spbu.ru

(Поступила в Редакцию 1 июля 2005 г.)

Исследована морфология экспонированных на воздухе при комнатной температуре стабилизированных поверхностей кристаллов $CdS_{1-x}Se_x$ методом атомно-силовой микроскопии. Описаны наиболее характерные особенности рельефа естественных граней данных кристаллов. Кратко обсуждены причины возникновения этих особенностей. Исследования морфологии сопоставлены с исследованиями поверхностных микро- и наноструктур методом микрокатодолюминесценции, выявившим объекты, которые вносят вклад в экситонное излучение и, следовательно, являются твердыми растворами $CdS_{1-x}Se_x$.

PACS: 68.37.Ps, 68.35.Bs

Особенности морфологии поверхности разнообразных полупроводниковых структур с успехом исследуются методом атомно-силовой микроскопии (АСМ). АСМ позволяет выявлять и характеризовать различные микрои нанообъекты, возникающие на поверхности под воздействием разных технологических условий. С помощью АСМ изучаются самоорганизация квантовых точек на поверхности бинарных соединений А2В6 и их твердых растворов, а также влияние атмосферных условий на морфологию поверхности. Методом АСМ проведены исследования естественных граней CdSe [1]. Изучение морфологии поверхности было проведено в [2] для самоорганизованных квантовых точек CdSe, выращенных методом MBE на подложке ZnSe. В работе [3] исследовано влияние атмосферных условий на параметры и динамику системы незарощенных Cd(Zn)Se наноостровков. Изучалась динамика формирования нанокластеров на поверхности эпитаксиальных пленок CdTe и ZnSe [4-6]. Также вызывают интерес исследования влияния на морфологию поверхности распределения напряжений в объеме, проведенные для InGaAsP/InGaP гетероструктур [7].

1. Эксперимент

В настоящей работе изучалась поверхность естественных граней кристаллов твердых растворов $CdS_{1-x}Se_x$ (при 0.15 < x < 0.5). Кристаллы были выращены методом сублимации из газовой фазы. Испарение материала шихты происходило при T = 1250 K, конденсация — при T = 1100 K. Время остывания реактора составля-

ло 24 h, и в диапазоне температур 1250–900 K скорость остывания была 3 K/min. Перед исследованием кристаллы выдерживались при атмосферных условиях. Наблюдения за особенностями рельефа поверхности проводились в течение трех лет. С течением времени эти особенности не изменялись, т.е. поверхность была стабилизирована. Анализ химического состава приповерхностной области ряда образцов показал наличие углерода и кислорода, адсорбированных из атмосферы. Исследование поверхности проводилось с помощью современных атомно-силовых микроскопов в ФТИ им. Иоффе (Санкт-Петербург, Россия), в Institute of Surface Modification (Лейпциг, Германия), а также в Osaka City University, (Осака, Япония).

Установка для регистрации микрокатодолюминесценции была собрана на основе сканирующего электронного микроскопа (CamScan CS 44). Энергия электронов менялась в пределах от 5 до 20 KeV, ток 800 pA, латеральное разрешение метода 1 µm, глубина проникновения луча могла меняться от 0.1 до 5 µm. Система регистрации излучения охватывала диапазон 350-950 nm с разрешением, равным 0.5 nm. Установка позволяла выполнять картографирование интенсивности излучения поверхности на фиксированной длине волны, а также регистрировала спектры катодолюминесценции от разных участков поверхности. Регистрация проходила при 10 К. Одновременно можно было изучать как рельеф поверхности методом эмиссии вторичных электронов, так и проводить рентгеноспектральный анализ химического состава исследуемого участка.

2. Результаты и обсуждение

2.1. А С М-исследования. Исследование твердых растворов (ТР) $CdS_{1-x}Se_x$ различного состава позволило наблюдать на их поверхности весьма разнообразные микро- и наноструктуры. На исследованных поверхностях кристаллов $CdS_{1-x}Se_x$ можно выделить два основных типа неоднородностей: протяженные структуры и локальные микро-и нанообъекты. Последние могут иметь ограненную или сферическую форму. Кроме того, на поверхности могут наблюдаться локальные структуры неправильных очертаний и произвольных размеров.

2.1.1. Протяженные структуры.

Ступени. На поверхности кристаллов ТР $CdS_{0.7}Se_{0.3}$ и $CdS_{0.5}Se_{0.5}$ наблюдались два вида протяженных структур с разным периодом и разным профилем поперечного сечения (рис. 1, *a*-*c*). Для структуры с периодом в пределах от 90 до 150 nm профиль приведен на рис. 2, *a*. Такая структура представляет собой систему ступеней высотой 0.4 nm. Для структуры с периодом в пределах от 1200–3100 nm профиль структуры приведен на рис. 2, *b*. Профиль ступеней с большим периодом (рис. 2, *b*) волнообразен и может быть как симметричным, так и асимметричным. Амплитуда "волн" составляет от 1 до 5 nm. Часто на поверхности можно наблюдать

Рис. 1. АСМ-изображения рельефа поверхности кристаллов $CdS_{1-x}Se_x$: a — система ступеней на поверхности кристалла $CdS_{0.7}Se_{0.3}$, покрытая наноостровками; b — система ступеней на поверхности кристалла $CdS_{0.5}Se_{0.5}$, покрытая порами; c — наложение двух параллельно идущих систем ступеней с разными периодами на поверхности кристалла $CdS_{0.5}Se_{0.5}$; d — прямоугольные террасы.

Рис. 2. Профили рельефа поверхности кристаллов $CdS_{1-x}Se_x$: a — поперечное сечение поверхности кристалла $CdS_{0.7}Se_{0.3}$, представленной на рис. 1, a (система ступеней с малым периодом ~ 0.13 μ m и высотой ступени 0.4 nm); b — поперечное сечение поверхности кристалла $CdS_{0.5}Se_{0.5}$, представленной на рис. 1, c (наложение систем ступеней с разными периодами, периоды отмеченные стрелками 0.11 и 1.26 μ m, высота ступеней соответственно 0.2 и 0.75 nm).

наложение двух систем ступеней с разными периодами (рис. 1, c). Как правило, они параллельны друг другу, но иногда могут пересекаться под некоторым углом, близким к кристаллографическому. Можно предположить, что система ступеней с малым периодом возникает из-за отклонения поверхности кристалла от кристаллографической плоскости (1010) на малый угол. При этом угол между направлением ступеней и оптической осью с определяется ориентацией грани относительно кристаллографических поверхностей (1010) и (1120). Для кристалла CdSe_{0.7}Se_{0.3} (рис. 1, a) угол наклона составляет ~ 0.2°.

Прямоугольные террасы. На поверхности некоторых ТР образуются ступени в виде прямоугольных террас (рис. 1, d). Типичный размер террас составлял 500 nm. Так же как и в случае ступеней, мы полагаем, что эта структура возникла благодаря существованию небольшого угла между поверхностью кристалла и кристаллографическими плоскостями (1010) и (1120). В ряде случаев на поверхности образуются менее упорядоченные системы лепестков меньшего размера.

2.1.2. Локальные микро- и нанообъекты. Помимо протяженных образований, связанных с кристаллографическими особенностями материала, на поверхности образцов могут наблюдаться различные локальные нанообъекты.

Нанообъекты на поверхности могут быть разделены на две группы:

a) нанообъекты, упорядоченно расположенные на поверхности образцов и обладающие симметрией (как гексагональной, так и цилиндрической), и

б) хаотично расположенные наноостровки.

Цепочки наноостровков. На поверхности ТР $CdS_{0.75}Se_{0.25}$ наблюдаются наноостровки, выстроенные в продольные цепочки (рис. 3, *a*). В большинстве случаев цепочки параллельны оси **с**, но иногда направлены к ней под углом 45°. Размер наноостровков, составляющих цепочки, изменяется в пределах от 50 до 200 nm, при этом однако размер наноостровков, входящих в одну цепочку, меняется весьма незначительно. Минимальное расстояние между цепочками составляет около 100 nm.

Двухмодовые системы. Некоторые участки поверхности ТР $CdS_{1-x}Se_x$ с x от 0.01 до 0.25 покрыты двумя системами нанокристаллов со средним размером 150 и 700 nm (рис. 3, *b*). Как правило, нанокристаллы большего размера имеют форму гексагональных пирамид. Необходимо отметить, что в данном случае исследовалась стабилизированная поверхность в противоположность свежей поверхности, исследованной в работах [3,6], где наблюдалось перераспределение ма-

Рис. 3. АСМ-изображения рельефа поверхности кристаллов $CdS_{1-x}Se_x$: a — цепочки наноостровков (x = 0.5); b — двухмодовая система нанокристаллов (x = 0.25), зарегистрированная в режиме постоянной силы; c — сферические нанообразования (x = 0.5), d — двухмодовая система нанокристаллов (x = 0.25), зарегистрированная в режиме поверхностной топографии.

териала между кластерами путем поглощения меньших нанокристаллов бо́льшими в течение нескольких дней за счет процессов диффузии.

Сферические нанообразования. На поверхности прямоугольных террас (рис. 1, d) находятся нанообразования, показанные в увеличенном масштабе на рис. 3, c. Эти нанообразования представляют собой кольца, внутри которых либо возникает пора, либо формируется наноостровок, имеющий форму сферического сегмента.

Сферические образования, на наш взгляд, можно связать с выходом на поверхность через поры избытка расплавленных компонент халькогенидов, входящих в состав ТР, при остывании образцов ($T_m^{(Se)} = 217^{\circ}$ С, $T_m^{(S)} = 119.3^{\circ}$ С). Междоузельные атомы халькогенидов собираются в порах внутри образца, и избыточное давление выталкивает их на поверхность.

Шестигранные замкнутые структуры. На поверхности ряда образцов наблюдаются цепочечные структуры (рис. 4, *a*, *b*), звенья которых состоят из замкнутых шестиугольников. Поперечный размер структуры составляет 45 nm, высота барьера, ограничивающего структуру,— 2 nm. Замкнутые цепочечные структуры дислоцируются между краями ступенек.

На поверхности можно наблюдать одиночные нанотрубки, латеральные размеры которых достигают 500 nm (рис. 4, c). Такие структуры, по-видимому, являются первоначальной стадией роста шестигранных нанотрубок [8].

Помимо одиночных нанотрубок (рис. 4, *c*) на поверхности можно наблюдать конусообразные структуры (пирамидки), хаотично расположенные на поверхности.

Таким образом, наблюдаемые закономерности в расположении и форме нанообъектов группы a, связаны с симметрией кристаллической решетки ТР CdS_{1-x}Se_x.

Нанообъекты произвольной формы $(группа \delta)$. На поверхности кристаллов наблюдаются нанообъекты, не обладающие правильной формой и не объединенные упорядоченным расположением. Ступени покрыты либо наноостровками (рис. 1, *a*, *c*), либо порами (рис. 1, *b*) произвольной формы, причем следует дополнительно подчеркнуть, что эти нанообъекты локализованы в соответствии с особенностями потенциального рельефа, формируемого ступенями. Плотность нанообъектов максимальна вблизи ребер ступеней. Латеральные размеры наноостровков и пор находятся в пределах от десятков до сотен нанометров.

Таким образом, основной особенностью морфологии стабилизированных граней ТР $CdS_{1-x}Se_x$ можно считать наличие периодических протяженных структур. Присутствие на поверхности ступеней высотой порядка нескольких моноатомных слоев (с периодом от 90 до 150 nm) или прямоугольных террас позволяет сделать вывод о том, что естественные грани образцов, как правило, представляют собой вицинальные поверхности. Рентгеноструктурный анализ показывает [9], что

Рис. 4. АСМ-изображения поверхности кристалла $CdS_{0.5}Se_{0.5}$: *a*, *b* — цепочки шестигранных колец; *c* — трехмерное изображение поверхности кристалла $CdS_{0.5}Se_{0.5}$ с двумя системами ступеней, покрытой микрокристаллами.

для разных блоков имеется небольшое расхождение в ориентации (~ 0.1°) относительно направлений кристаллографических осей. Это расхождение и приводит к тому, что поверхность кристалла состоит из вицинальных поверхностей блоков, а их относительная ориентация определяет направление систем ступеней. Для кристалла CdS_{0.7}Se_{0.3} (рис. 1, *a* и 2, *a*) угол наклона составляет ~ 0.2°. Причем наличие террас указывает на то, что поверхность образует углы с двумя кристаллографическими плоскостями.

Еще одной особенностью морфологии стабилизированных граней ТР $CdS_{1-x}Se_x$ является одновременное присутствие на поверхности двух периодических структур с периодами от 90 до 150 nm и от 1200 до 3100 nm. Возникновение такой системы нельзя объяснить воздействием только одного механизма — отклонением поверхности кристалла от кристаллографической плоскости. Каждая из перечисленных структур должна быть обусловлена своим механизмом возникновения.

Одной из причин модуляции поверхности с периодом от 1200–3100 nm (рис. 2, b) могут служить особенности строения объема ТР CdS_{1-r}Se_r. Для данных образцов характерен структурный беспорядок, создаваемый дефектами упаковки (ДУ) [9,10], при этом кристаллы $CdS_{1-x}Se_x$ состоят из блоков, имеющих как гексагональную структуру, так и структуру с ДУ. В работе [11] было показано, что аналогичная модуляция поверхности наблюдалась для вицинальных брэгговских зеркал GaAs/AlGaAS. В этих гетероструктурах происходит подавление процессов образования двойников, причем наряду со ступеньками, характерными для вицинальных поверхностей, наблюдаются параллельные им полосы с периодом $1-4\,\mu m$. В нашем случае можно рассматривать ДУ (... *ABABACACA*... и ... *ABABABCACA*...), присутствующие в $CdS_{1-x}Se_x$, в качестве границ двойникования, а блоки с гексагональной структурой — как области, где механизм образования ДУ был подавлен.

Можно допустить, что еще одной причиной появления регулярной системы полос на поверхности CdS_{1-x}Se_x с характерным шагом от одного до нескольких микрометров являются напряжения, распределенные либо в объеме, либо на границах блоков с разной кристаллической структурой. Исследование сколов лазерных структур Cd(Zn)Se [3] показывает, что ступени появляются в области локализации напряжений. Периодически промодулированная поверхность наблюдалась также для системы квантовых ям InGaAsP/InGaP [7]. Авторы связывают такой тип поверхности с положительным и отрицательным напряжениями, чередующимися в объеме гетероструктуры, поскольку направление полос совпадало с направлением чередования слоев в гетероструктуре. В нашем случае полосы параллельны кристаллографической оси с, т.е. направлению, вдоль которого в кристаллах $CdS_{1-x}Se_{1-x}$ чередуются кубическая (ABC) и гексагональная (АВАВ) упаковки слоев. Однако, как показывают рентгеноструктурные исследования [9], внутри блоков в ТР $CdS_{1-x}Se_x$ напряжения отсутствуют, поэтому областями локализации напряжений должны являться границы блоков.

Ранее [3,4,12] возникновение нанообъектов на поверхности образцов наблюдалось на поверхности эпитаксиальных пленок A_2B_6 при выдерживании образцов в атмосферных условиях. При этом наноостровки имели пониженную механическую прочность и были расположены хаотично по поверхности. Образование таких наноостровков хорошо объясняется процессами коррозии поверхности, затрагивающими 2–3 моноатомных слоя.

595

Аналогичными процессами можно объяснить возникновение наноостровков и пор на ступенях (рис. 1, a-c).

Наблюдаемые нанообъекты группы а, упорядоченно расположенные на поверхности образцов и обладающие гексагональной симметрией, не могут быть обязаны своим происхождением процессам коррозии при выдерживании кристаллов в атмосферных условиях. Большинство таких нанообъектов, наблюдаемых нами, дислоцированы на поверхности подобно квантовым точкам, выращенным на вицинальных поверхностях кристаллов А2В6 [12] и А3В5 [13–15]. В указанных работах рассматривались самоорганизованные ансамбли квантовых точек, выращенные на вицинальных поверхностях, ориентированных различным образом. Самоорганизация квантовых точек происходила путем коалесценции материала. Распределение по размерам и расположение квантовых точек зависело при этом от угла разоориентации поверхности по отношению к кристаллографическим осям. Расположение наблюдаемых нанообъектов обусловлено особенностями потенциального рельефа поверхности кристаллов $CdS_{1-x}Se_x$, создаваемого протяженными структурами. Наноостровки (рис. 1, a, c) и шестигранные замкнутые структуры (рис. 4, *a*, *b*) лежат вдоль края ступеней, сферические нанообразования внутри террас (рис. 1, d и 3, c). Распределение по размерам в двухмодовой структуре (рис. 3, a) может быть объяснено особенностями коалесценции материала под действием механических напряжений, распределенных на промодулированной поверхности.

2.2. Микрокатодолюминесценция. Дополнительные сведения о морфологии поверхности и свойствах обнаруженных нанообъектов мы получили с помощью исследований микрокатодолюминесценции (картографирование поверхности и исследование спектров катодолюминесценции от разных участков поверхности). В работах [9,10,16] установлено, что люминесценция кристаллов CdS_{1-x}Se_x состоит из двух основных каналов излучательной рекомбинации: люминесценция от областей с гексагональной структурой (Aloc) и люминесценция от областей, содержащих ДУ (A_{SF}). Как показано в [16], области с различной кристаллической структурой проявляются при картографировании в виде полос с разной интенсивностью излучения. Максимумы спектров катодолюминесценции, принадлежащих полосам с разной интенсивностью излучения, соответствуют двум указанным каналам.

В спектр катодолюминесценции наряду с вкладом излучения из объема кристаллов существенный вклад вносит люминесценция нано- и микрообъектов, расположенных на поверхности образцов. Эти объекты можно наблюдать при картографировании люминесцирующей поверхности кристалла в виде ярких точек при фиксированной длине волны, близкой к максимуму излучения локализованных экситонов в блоках с гексагональной структурой (рис. 5, *a*, *b*). Наше исследование поверхности с помощью сканирующей электронной микроскопии (SEM) показало (рис. 5, *c*), что эти точки со-

ответствуют микрокристаллам на поверхности образца и могут достигать в высоту 50 nm. Микрокристаллы имеют форму пирамид, а их латеральные размеры могут превышать 500 nm. Вклад этих объектов в люминесценцию был изучен отдельно. Их спектр содержит линию, несколько сдвинутую относительно бесфононной линии, обусловленной излучением "от объема" в сторону высоких энергий (рис. 5, d).

На рис. 5, d приведены спектры от микрокристаллов, расположенных на поверхности блоков с разной структурой. Видно, что, когда микрообъекты расположены на участке с гексагональной структурой (кривые 1, 2 на рис. 5, d) вклады в излучение от микрокристаллов и от объема представляют собой одну асимметричную линию с максимумом 2.073 eV (при этом максимум излучения из блоков с гексагональной структурой находится при 2.071 eV). Когда микрообъекты расположены на участке, обладающем структурой с ДУ (кривые 3, 4 на рис. 5, d), их вклад в люминесценцию проявляется в виде самостоятельного максимума. Важно подчеркнуть, что на участках, свободных от микрокристаллов

Рис. 5. Катодолюминесценция кристаллов $CdS_{0.5}Se_{0.5}$: a, b — картографирование (стрелкой отмечены замкнутые структуры). c — SEM-изображение поверхности. d — спектры катодолюминесценции: l — от области с гексагональной структурой; 2 — от микрохолмика, расположенного на поверхности области с гексагональной структурой; 3 — от области, содержащей ДУ; 4 — от микрокристалла (microhill), расположенного на поверхности области, содержащей ДУ.

и находящихся в непосредственной близости к ним, указанная линия люминесценции с положением максимума 2.073 eV (*I*_{microhill}) не обнаруживалась.

На рис. 5, *d* люминесценция от областей с гексагональной структурой и люминесценция от областей, содержащих ДУ, отмечена стрелками A_{loc} и A_{SF} соответственно.

При картографировании (сканировании) поверхности на длине волны, близкой к максимуму излучения локализованных экситонов в блоках с гексагональной структурой, наблюдается специфическая неоднородность в распределении яркости (рис. 5, *b*). Обращают на себя внимания замкнутые структуры, например обозначенные на рис. 5, *b* стрелкой, состоящие из более темного участка в центре, окруженного светлым кольцом, радиус которого составляет около 5 μ m. Наличие кольцеобразных структур установлено нами и при проведении АСМисследований. Таким образом, кольцеобразные структуры различного радиуса можно наблюдать как методом АСМ (диаметр кольцеобразных структур 50 nm), так и при исследовании катодолюминесценции кристаллов CdS_{1-*x*}Se_{*x*} (диаметр кольцеобразных структур 5 μ m).

Спектральное положение максимума излучения, наблюдаемого от микрообъектов, находится в области экситонного излучения кристаллов $CdS_{1-x}Se_x$, т.е. микрокристаллы вносят свой независимый вклад в экситонную люминесценцию. Как отмечалось выше, эти микрообъекты имеют форму правильных пирамид. Оба указанных обстоятельства позволяют сделать вывод о том, что микрокристаллы-пирамиды представляют собой TP $CdS_{1-x}Se_x$, причем состав микрокристаллов $CdS_{1-x}Se_x$ близок к составу макрокристаллов.

Возникновение микро- и нанокристаллов может происходить на последней стадии роста кристалла при остывании образца в реакторе. Разница в скорости остывания приповерхностного слоя и объема создает напряжение между ними и способствует коагуляции материала, находящегося на поверхности. А сами микрои нанообъекты представляют собой зародышевую кристаллическую фазу.

Таким образом, изучение особенностей рельефа естественных граней кристаллов ТР CdS_{1-x}Se_x позволяет получить важную информацию о строении и состоянии поверхности, при этом первостепенный интерес представляет корреляцию электронных и оптических свойств со структурными особенностями. Наши АСМ-исследования выявили наличие трех основных типов особенностей рельефа поверхностей: модуляцию поверхности, нанокристаллы, возникающие на последних этапах роста кристалла, а также наноостровки и поры, образованные за счет процессов коррозии. Исследования катодолюминесценции позволили установить, что микро- и нанокристаллы на поверхности способны люминесцировать. Спектральный состав их излучения позволяет сделать вывод об экситонном характере люминесценции и заключение о том, что данные объекты являются ТР $CdS_{1-x}Se_x$.

Список литературы

- J. Vaitkus, R. Baubunas, M. Hammav, M. Gothelid, M. Bjorgvist, E. Lindberg, J. Crystal Growth 138, 545 (1994).
- [2] J.L. Merz, S. Lee, J.K. Furdyna. J. Crystal Growth 184/185, 228 (1998).
- [3] А.В. Анкудинов, М.С. Дунаевский, В.А. Марущак, А.Н. Титков, С.В. Иванов, С.В. Сорокин, Т.В. Шубина, П.С. Копьев, А. Вааг, Г. Ландвер. ФТТ, 42, 1874 (2000).
- [4] J.B. Smathers, E. Kneedler, B.R. Bennet, B.T. Jonker. Appl. Phys. Lett. **72**, 1238 (1998).
- [5] X.B. Zhang, S.K. Hark. Appl. Phys. Lett. 74, 3857 (1999).
- [6] D. Martrou, P. Gentiele, N. Magnea. J. Crystal Growth 201/202, 101 (1999).
- [7] Huajie Chen, R.M. Feenstra, R.S. Goldman, C.S. Silveniuus, G. Lamdgren. Appl. Phys. Lett. 72, 1727 (1998).
- [8] Н.Н. Колесников, В.В. Кведер, R.B. James, Д.Н. Борисенко, М.П. Кулаков, Н.С. Берзигияров. Тез. докл. VI Рос. конф. по физике полупроводников. Санкт-Петербург (2003). С. 153.
- [9] Н.Р. Григорьева, Р.В. Григорьев, Е.П. Денисов, Б.А. Казеннов, Б.В. Новиков, Д.Л. Федоров. ФТТ 42, 1570 (2000).
- B.V. Novikov, N.R. Grigorieva, B.A. Kazennov, G. Wagner, R. Schwabe, J. Lenzner. J. Crystal Growth 233, 68 (2001).
- [11] Ch. Guerret-Piecourt, Ch. Fontaine, A. Ponchet. J. Crystal Growth 201/202, 178 (1999).
- [12] L. Marsal, H. Mariette, Y. Samson, J.L. Rouviere, E. Picard. Appl. Phys. Lett. 73, 2974 (1998).
- [13] В.Г. Талалаев, Б.В. Новиков, С.Ю. Вербин, А.Б. Новиков, Динь Шон Тхак, Г. Гобш, Р. Гольдхан, Н. Штейн, А. Голомбек, Г.Э. Цырлин, В.Н. Петров, В.М. Устинов, А.Е. Жуков, А.Ю. Егоров. ФТП **34**, 467 (2000).
- [14] В.П. Евтихиев, В.Е. Токранов, А.К. Крыжановский, А.М. Бойко, Р.А. Сурис, А.Н. Титков, А. Накамура, М. Ичида. ФТП 32, 860 (1998).
- [15] Г.В. Астахов, В.П. Кочерешко, Д.Г. Васильев, В.П. Евтихиев, В.Е. Токранов, И.В. Кудряшов, Г.В. Михайлов. ФТП 33, 1084 (1999).
- [16] B.V. Novikov, N.R. Grigorieva, R.V. Grigoriev, B.A. Kazennov, G. Wagner, R. Schwabe, J. Lenzner. Phys. Stat. Sol. (b) 229, 69 (2002).