03;05;12

Термомеханический эффект в гибридно-ориентированном нематическом жидком кристалле

© Р.С. Акопян, Р.Б. Алавердян, Э.А. Сантросян, Ю.С. Чилингарян

Ереванский государственный университет

Поступило в Редакцию 20 декабря 1996 г.

Впервые экспериментально зарегистрирован термомеханический эффект в гомеотропно-планарно ориентированном нематическом жидком кристалле, заключающийся в возникновении гидродинамического потока за счет продольного градиента температуры. Измеренное значение термомеханического коэффициента хорошо согласуется с теоретической оценкой.

1. Термомеханические эффекты в холестерических жидких кристаллах предсказаны и исследованы экспериментально в работах [1-3]. Эти эффекты связаны с хиральностью холестериков, т.е. с отсутствием в них право-левой симметрии. В работе [4] впервые построена последовательная теория термомеханических эффектов в деформированных жидких кристаллах, а также предсказан ряд новых термомеханических эффектов. Соображения пространственной симметрии показывают, что для их реализации необходима пространственная неоднородность невозмущенного распределения директора. Были оценены также константы термомеханических эффектов. Авторы работы [5] считают, что члены первого порядка по градиентам скорости, директора и температуры в диссипативной функции отсутствуют из-за их неинвариантности относительно обращения времени. Однако если принять, что термомеханические константы являются псевдоскалярными величинами, то свойство инвариантности диссипативной функции в [4] при обращении времени не нарушается. Кроме того, в работе [6] сообщалось об экспериментальном обнаружении вращения вещества в горизонтальной плоскости нематических слоев, находящихся в поле продольного градиента температуры. Из экспериментальных данных было вычислено значение псевдоскалярной

77

Рис. 1. Геометрия эксперимента. *1* — поляризационный микроскоп, *2* — ячейка с нематическим жидким кристаллом, *3* — прозрачный нагреватель.

термомеханической константы $\xi \sim 10^{-11}$ Н/град., хорошо согласующейся с теоретическими расчетами работы [4].

В настоящей работе экспериментально и теоретически рассматривается возникновение гидродинамических потоков за счет градиента температуры в гибридно-ориентированном нематике.

2. В работе использовался гибридно-ориентированный НЖК МББА с интервалом нематической фазы $20-47^{\circ}$ С. Ячейка типа "сэндвич" устанавливалась в строго горизонтальной плоскости и подогревалась снизу сплошным прозрачным нагревателем, обеспечивающим однородный нагрев в горизонтальной плоскости с точностью $\pm 0.01^{\circ}$ С и возможность наблюдения текстур в поляризационный микроскоп (рис. 1). Разность температур на нижней и верхней поверхностях пленки, как и в [6], определялась как разность температур перехода в изотропную фазу нижнего и верхнего слоев. Скорость V определялась как максимальная скорость движения мелких (2–3) (мкм) частиц окиси алюминия.

Геометрия эксперимента приведена на рис. 1 (a, δ) . Пунктирными линиями изображено распределение директора в плоскости (x, z). В эксперименте, когда подложка ячейки, задающая планарную ориентацию НЖК, находилась сверху (случай a), наблюдалось течение жидкого

Рис. 2. Временные зависимости: a — координаты края жидкости x и b — абсолютного значения максимальной скорости V_x .

кристалла в направлении оси *х*. При повороте ячейки вокруг оси *z* это течение сохранялось и всегда было направлено по оси легкого ориентирования \mathbf{e}_x на подложке, задающей планарную ориентацию нематического жидкого кристалла. Максимальная скорость течения для ячейки с толщиной L = 120 мкм и разностью температур на верхней и нижней поверхностях $\Delta = 4.7^{\circ}$ С была порядка $\mathbf{V} \sim 0.4$ мкм/с. Течение НЖК останавливается после того, как жидкий кристалл достигает края ячейки, что, по-видимому, обусловлено возникновением капиллярных сил на крае ячейки. После выключения температурного градиента жидкий кристалл не возвращается к исходному положению.

Экпериментальные результаты в случае, когда подложка, задающая планарную ориентацию молекул НЖК, находится снизу (случай δ), качественно отличаются от случая *a*. Наблюдается следующая динамика гидродинамического течения. После включения градиента температуры $\nabla_z T$ возникает течение НЖК в положительном направлении оси *x*. Через некоторое время (~ 15–20 мин) жидкий кристалл постепенно останавливается, не достигая края ячейки, после чего начинается течение жидкости в обратном направлении. После возвращения НЖК к исходному положению процесс повторяется.

Таким образом, в случае δ возникает колебание жидкости, которое практически не прекращается в течение длительного времени (наблюдалось движение в течение более чем 10 ч) при поддержании градинета температуры неизменным. Гидродинамические колебания жидкого кристалла прекращаются после выключения градиента температуры. На рис. 2 приведена зависимость координаты края жидкости x и максимальной скорости течения V от времени.

3. С целью теоретического рассмотрения и проведения численных оценок будем считать, что при z = 0 граничное условие на стенке задает гомеотропную ориентацию: $\mathbf{n}(z = 0) = \mathbf{e}_z$, а при z = L — планарную: $\mathbf{n}(z = L) = \mathbf{e}_x$. Здесь \mathbf{n} — директор нематического жидкого кристалла. Пусть внешние источники тепла поддерживают температуру $T = T_0 + \Delta T$ в сечении z = 0 и темпераутру $T = T_0$ в сечении z = L. Тогда градиент температуры $dT/dz \sim \Delta T/L$ приведет к термомеханическому протоку НЖК в направлении оси x. В описанной выше геометрии можно предполагать $n_y = 0$, $V_y = V_z = 0$, $\partial/\partial x = \partial/\partial y = 0$. В стационарном режиме ($\partial/\partial t = 0$) уравнение Навье-Стокса имеет вид [4]:

$$dG_{zx}^{TM}/dz + dG_{zx}' = 0.$$
 (1)

Здесь $G_{zx}^{TM} + G'_{zx} - zx$ компонент тензора вязких напряжений:

$$G'_{zx} = \eta dV_x/dz, \tag{2}$$

$$G_{zx}^{TM} = \pi dT / 8Ldz \Big[n_x^2 \left(-2\xi_1 - 2\xi_5\xi_3 - \xi_7 \right) + n_z^2 (\xi_7 - \xi_3 + \xi_{11} + 2\xi_{12}) + n_z^4 \left(\xi_3 - \xi_4 - \xi_7 + \xi_8 - \xi_{11} - \xi_{12} \right) + n_x^2 n_z^2 (\xi_3 - \xi_4 + \xi_7 - 2\xi_9 + 4\xi_{10} - 4\xi_{12}),$$
(3)

где η – коэффициент вязкости, $dT/dz = \Delta T/L$ — градиент температуры, $\xi_1 \div \xi_{12}$ — псевдоскалярные термомеханические константы. Решение уравнений (1) для скорости термомеханического потока получаем в виде:

$$V_x = \xi \pi \Delta T / \eta L, \quad \xi = \xi_1 - \xi_5 + \xi_8 + \xi_9 + 2\xi_{10}. \tag{4}$$

Воспользовавшись экспериментальными данными L = 120 мкм, $\Delta T = 4.7^{\circ}$ С, $\eta = 1$ П, V = 0.4 мкм/с, для термомеханического коэффициента получаем $\xi = 10^{-12} H^{\circ}$ С, которое хорошо согласуется с теоретическими оценками [4].

Таким образом, в настоящей работе впервые обнаружен термомеханический эффект в гибридно-ориентированном нематическом жидком кристалле. Эмпирически получено одно из двенадцати необходимых соотношений между двенадцатью термомеханическими коэффициентами: для их экспериментального измерения необходимо предложить и провести еще одиннадцать независимых экспериментов. Некоторые из них (например, термомеханический эффект в твист-нематике), нам предстоит осуществить в будущем.

Список литературы

- [1] Leslie F.M. // Proc. Roy. Soc. A. 1968. P. 307.
- [2] Stephen M.J., Straley J.P. // Rev. Mod. Phys. 1974. V. 46. P. 617.
- [3] Eber N., Janossy I. Proceedings of the Fourth Liquid Crystal Conference of Socialist Countries, USSR, Tbilisi. 1981. V. 11. P. 125.
- [4] Акопян Р.С., Зельдович Б.Я. // ЖЭТФ. 1984. Т. 11. С. 1660.
- [5] Brand H.R., Pleiner H. // Phys. Rev. A. 1987. V. 5. P. 7.
- [6] Лавернтович О.Д., Настишин Ю.А. // Укр. физ. ж. 1987. Т. 32 (5). С. 710.