01;07

Решение задачи оптической томографии для ограниченных рассеивающих сред в двухпотоковой модели переноса излучения

© С.А. Терещенко, С.В. Селищев

Московский институт электронной техники (технический университет) Поступило в Редакцию 6 сентября 1996 г.

На основе точного решения уравнений двухпотоковой модели переноса излучения для ограниченной среды решена задача оптической томографии рассеивающих сред. Показано, что после предварительной обработки измеренных данных задача сводится к обратному преобразованию Радона, если считать коэфициенты поглощения и рассеяния пропорциональными плотности поглощающих и рассеивающих центров.

При решении задачи оптической трансмиссионной томографии сильнорассеивающих (мутных) сред определяющее значение имеет рассмотрение процесса прохождения тонкого лазерного луча через такую среду. Математическая модель описания этого процесса, с одной стороны, должна достаточно точно соответствовать физике прохождения излучения через вещество, а, с другой стороны, позволять использовать хорошо разработанные методы обращения преобразования Радона [1] для реконструкции двумерного (трехмерного) распределения оптических характеристик рассеивающей среды. Одним из перспективных подходов оказалось обобщение двухпотоковой модели Кубелки-Мунка [2], разработанной для стационарного случая и применявшейся для описания прохождения излучения через однородные среды, на нестационарный случай [3] и неоднородные среды для решения задачи оптической томографии [4].

В работе [4] задача оптической томографии была решена на основе рассмотрения переноса излучения в приближении полубесконечной среды, что естественно, вносило неточность в восстановленное изображение. В данной работе задача оптической томографии решается на основе точного решения для ограниченной среды, что делает более корректным

64

использование на следующем этапе обратного преобразования Радона. Как и ранее, ответ получен в предположении, что основные оптические характеристики рассеивающей среды (коэффициенты поглощения и рассеяния света) пропорциональны (с разными коэффициентами пропорциональности) плотности поглощающих и рассеивающих центров в среде.

Введем в плоскости исследуемого сечения трехмерного объекта неподвижную систему координат (x, y) и вращающуюся систему координат $(\xi, \zeta) = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta)$, где θ — угол поворота вращающейся системы координат относительно неподвижной системы координат. Тогда распространение оптического импульса вдоль оси ζ в двухпотоковом приближении можно описать следующей системой уравнений:

$$\frac{1}{v}\frac{\partial}{\partial t}F_{+}(\zeta,t) + \frac{\partial}{\partial\zeta}F_{+}(\zeta,t) + m(\zeta)F_{+}(\zeta,t) - m_{s}(\zeta)F_{-}(\zeta,t) = 0 \\
\frac{1}{v}\frac{\partial}{\partial t}F_{-}(\zeta,t) - \frac{\partial}{\partial\zeta}F_{-}(\zeta,t) + m(\zeta)F_{-}(\zeta,t) - m_{s}(\zeta)F_{+}(\zeta,t) = 0 \\
F_{+}(\zeta_{0},t) = F_{0}(t) \qquad F_{+}(\zeta,0) = 0$$
(1)

$$F_{+}(\zeta_{0},t) = F_{0}(t) \\ F_{-}(\zeta,t) = 0 \\ F_{-}(\zeta,0) = 0 \\ F_{-}(\zeta,0)$$

где t — время, v — скорость света в среде, $F_+(\zeta, t) > 0$ — плотность потока энергии, распространяющегося в направлении оси ζ , $F_-(\zeta, t) > 0$ — плотность потока энергии, распространяющегося в противоположном направлении, $m_a(\zeta) = m_a(\xi, \zeta)$ — коэффициент поглощения излучения средой, $m_s(\zeta) = m_s(\xi, \zeta)$ — коэффициент рассеяния излучения средой, $m(\zeta) = m(\xi, \zeta) = m_a(\zeta) + m_s(\zeta)$, ζ_0 — точка входа лазерного луча в рассеивающую среду, ζ_1 — точка выхода лазерного луча из рассеивающей среды, $F_0(t)$ — начальная форма лазерного импульса. Выражение (2) определяет граничные и начальные условия.

Пусть, как и в [4], $m_a(x, y) = An(x, y)$ и $m_s(x, y) = Sn(x, y)$, где n(x, y) — плотность поглощающих и рассеивающих центров в среде, A и S — некоторые констатны, не зависящие от координат. Такое достаточно естественное предположение сводит две неизвестные функции $m_a(x, y)$ и $m_s(x, y)$ к одной n(x, y). Переходя к полной энергии соответствующих

5 Письма в ЖТФ, 1997, том 23, № 17

импульсов:

$$U_{+}(\zeta) = \int_{0}^{\infty} F_{+}(\zeta, t) dt$$
 и $U_{0} = \int_{0}^{\infty} F_{0}(t) dt$,

получим для $U_+(\zeta)$ обыкновенное дифференциальное уравнение:

$$\frac{d^2}{d\zeta^2}U + (\zeta) - \frac{n'_s(\zeta)}{n_s(\zeta)}\frac{d}{d\zeta}U_+(\zeta) - A(A+2S)n^2(\zeta)U_+(\zeta) = 0,$$
(3)

$$U_{+}(\zeta_{0}) = U_{0} \frac{d}{d\zeta} U_{+}(\zeta)|_{\zeta=\zeta_{1}} = -(A+S)n(\zeta_{1})U_{+}(\zeta_{1})$$
(4)

Решением уравнения (3) с граничными условиями (4) будет:

$$U_{+}(\zeta) = U_{0} \Big[C_{1} \exp\left(-\int_{\zeta_{0}}^{\zeta} \sqrt{A(A+2S)}n(\chi)d\chi\right) + C_{2} \exp\left(\int_{\zeta_{0}}^{\zeta} \sqrt{A(A+2S)}n(\chi)d\chi\right) \Big],$$
(5)

где

$$C_{1} = \frac{\left[A + S + \sqrt{A(A + 2S)}\right]}{\left[A + S + \sqrt{A(A + 2S)}\right] - \left[A + S - \sqrt{A(A + 2S)}\right]\varphi^{2}(\zeta_{1})},$$

$$C_{2} = \frac{-\left[A + S - \sqrt{A(A + 2S)}\right]\varphi^{2}(\zeta_{1})}{\left[A + S + \sqrt{A(A + 2S)}\right] - \left[A + S - \sqrt{A(A + 2S)}\right]\varphi^{2}(\zeta_{1})}.$$
(6)

Письма в ЖТФ, 1997, том 23, № 17

Обозначая $q = U_+(\zeta_1)/U_0$, найдем проекционные данные

$$p(\xi,\theta) = \int_{\zeta_0}^{\zeta_1} \sqrt{A(A+2S)} n(\chi) d\chi :$$
$$p(\xi,\theta) = -\ln\left(\frac{-\sqrt{A(A+2S)} + \sqrt{A^2 + 2AS + q^2S^2}}{q\left[A + S - \sqrt{A(A+2S)}\right]}\right).$$
(7)

Применяя к проекционным данным обратное преобразование Радона $\mathcal{R}^{-1} \{ p(\xi, \theta) \}$ [1], можно восстановить распределение плотности поглощающих и рассеивающих центров:

$$n(x, y) = \frac{1}{\sqrt{A(A+2S)}} \mathcal{R}^{-1} \{ p(\xi, \theta) \}.$$
 (8)

Таким образом, для рассмотренного случая задача томографической реконструкции распределения плотности поглощающих и рассеивающих центров в среде n(x, y) сводится к задаче восстановления с помощью обратного преобразования Радона при условии предварительной обработки по формуле (7) измеренных данных для нахождения точных проекционных данных.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 96–02–18900).

Список литературы

- [1] *Наттерер* Ф. Математические аспекты компьютерной томографии. М.: Мир, 1990. 288 с.
- [2] Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. М.: Мир, 1981. Т. 1. 280 с.
- [3] Терещенко С.А., Подгаецкий В.М., Воробьев Н.С., Смирнов А.В. // Квантовая электроника. 1996. Т. 23. № 3. С. 265–268.
- [4] Селищев С.В., Терещенко С.А. // Письма в ЖТФ. 1995. Т. 21. В. 12. С. 24-27.

5* Письма в ЖТФ, 1997, том 23, № 17