01;03

Влияние упругости и динамического поверхностного натяжения на спектр волновых движений заряженной поверхности жидкости

© С.О. Ширяева, А.И. Григорьев, Д.Ф. Белоножко

Ярославский государственный университет

Поступило в Редакцию 19 февраля 1997 г.

Показано, что совместное влияние эффектов релаксации вязкости и поверхностного натяжения на положение границы спектра капиллярных волн, реализующихся в системе, не определяется аддитивным образом через влияния каждого из эффектов по отдельности, что связано с нелинейностью дисперсионного уравнения по отношению к соответствующим физическим параметрам.

Феномен неустойчивости заряженной поверхности жидкости играет важную роль в различных технических и технологических устройствах [1]. Но тем не менее некоторые аспектры реализации эффекта до сих пор не исследованы. Сказанное относится и к влиянию релаксационных процессов на капиллярное волновое движение на заряженной поверхности жидкости, хотя на важную роль эффектов релаксации вязкости и поверхностного натяжения в формировании волнового спектра было указано уже давно [2]. Как показано в [3,4], эффекты релаксации вязкости и поверхностного натяжения границы раздела электропроводной жидкости и диэлектрической среды весьма слабо сказываются на закономерностях реализации неустойчивости заряженной поверхности жидкости: они не влияют на критические условия и весьма слабо меняют инкремент неустойчивости. В этой связи в проводимом рассмотрении предполагается исследовать взаимодействие эффектов релаксации вязкости и поверхностного натяжения и его влияние на структуру спектра волновых движений жидкости.

1. Пусть имеется однородно заряженная с поверхностной плотностью заряда *к* неограниченная плоская поверхность вязкой несжимаемой идеальнопроводящей жидкости, заполняющей в поле сил тяжести

32

 $(\mathbf{n}_{z}||-\mathbf{g})$, здесь \mathbf{n}_{z} -орт декартовой оси *z*; \mathbf{g} — ускорение силы тяжести) полупространство *z* < 0 и граничащей при *z* = 0 с вакуумом. Уравнение граничной поверхности в отсутствие возмущения записывается в виде *z* = 0. Пусть σ и ν — коэффициенты поверхностного натяжения и кинематической вязкости жидкости, а ρ — ее удельная плотность.

В [5] проводится подробный вывод дисперсионного уравнения для капиллярных волн на плоской поверхности вязкой жидкости в отсутствие поверхностного заряда. Повторяя те же рассуждения, что и в [5], лишь добавив в динамическое граничное условие для нормальной компоненты тензора напряжений слагаемое для давления электрического поля, учитывающее и вклад от деформации (из-за капиллярного волнового движения свободной поверхности) однородного распределения электрического заряда по поверхности жидкости [6,7], несложно получить дисперсионное соотношение для капиллярных движений заряженной поверхности жидкости:

$$\omega^2 + 4i \cdot \nu k^2 \cdot \omega - 4\nu^2 k^4 \left(1 - \sqrt{1 - \frac{i\omega}{\nu k^2}} \right) = \frac{k}{\rho} (g\rho + \sigma k^2 - 4\pi k \varkappa^2), \quad (1)$$

где ω — комплексная частота во временной зависимости амплитуд тепловых капиллярных волн от времени: $\xi \sim \exp(-i\omega t)$; k — волновое число; i — мнимая единица. Мнимая отрицательная часть комплексной частоты дает декремент затухания капиллярных волн, а мнимая положительная — инкремент нарастания неустойчивости Тонкса–Френкеля, которая реализуется, когда правая часть соотношения (1) (по мере увеличения поверхностной плотности электрического заряда) проходит через ноль и становится отрицательной. Вещественная часть комплексной частоты в используемом выражении дает частоту волнового движения.

В наиболее общей ситуации коэффициенты вязкости и поверхностного натяжения являются функциями частоты [2], что соостветствует учету в рамках идеализированной модели сплошной среды реального молекулярного строения жидкости, характеризующегося определенными скоростями передачи межмолекулярного взаимодействия, переноса импульса и наличия некого упорядочивания структуры жидкости в приповерхностном слое ее границы с другими средами:

$$\sigma = \sigma_{\infty} - \sigma_* (1 - i\omega\tau_n)^{-1} = \sigma_0 - i\omega\tau_n\sigma_*/1 - i\omega\tau_n,$$

$$\sigma_* = \sigma_{\infty} - \sigma_0, \quad \nu = \nu_0 (1 - i\omega\tau_b)^{-1}, \tag{2}$$

где ν_0 и σ_0 — значения коэффициентов вязкости и поверхностного натяжения на нулевой частоте; σ_{∞} — коэффициент поверхностного натяжения на высоких частотах (при $\omega \tau_n \gg 1$); τ_b и τ_n — характерные времена релаксации вязкости и поверхностного натяжения.

Подставим (2) в (1) и получим дисперсионное уравнение для капиллярных движений жидкости с заряженной свободной поверхностью в плоском полупространстве с учетом эффектов релаксации вязкости и поверхностного натяжения, имеющее в безразмерных переменных вид:

$$(1 - i\gamma y) [2 - i\gamma y(1 - i\delta y)]^{2} + \alpha^{2} (1 - i\gamma y)(1 - i\delta y)^{2}$$
$$-if\gamma y(1 - i\delta y)^{2} = 4(1 - i\gamma y)\sqrt{1 - iy(1 - i\delta y)};$$
(3)

$$y = \frac{\omega}{\nu_0 \cdot k^2}; \quad \alpha = \frac{\omega_0}{\nu_0 \cdot k^2}; \quad \omega_0^2 = \frac{k}{\rho}(g\rho + \sigma k^2 - 4\pi k\varkappa^2);$$
$$f = \sigma_*/\rho\nu^2 k; \quad \delta = \nu_0 \cdot k^2 \cdot \tau_b; \quad \gamma = \nu_0 \cdot k^2 \cdot \tau_n.$$

Несложно видеть, что физические параметры, определяющие релаксационные эффекты (γ и δ), входят в дисперсионное уравнение (3) мультипликативно и нелинейным образом, а следовательно, результат их совместного влияния на физические характеристики капиллярного движения жидкости неочевиден. Согласно [3,4], наиболее важным фактором влияния рассмотренных релаксационных эффектов является ограничение спектра капиллярных волн со стороны высоких волновых чисел. В этой связи рассмотрим, как эффекты релаксации вязкости и поверхностного натяжения влияют на положение верхней границы волновых чисел тепловых капиллярных волн по отдельности и совокупно.

На рисунке приведены результаты численных расчетов по (3) при $\gamma = 0, \delta = 0.25$ на рисунке, $a; f = 1, \gamma = 0.4, \delta = 0$ на рисунке, $b; f = 1, \gamma = 0.4, \delta = 0.25$ на рисунке, c. Пунктиром приведены продолжения реализующихся ветвей дисперсионного уравнения, уходящие на нижние листы двухлистной римановой поверхности, на которой определено дисперсионное уравнение (3).

Ветви 1, 2, 3 на приведенных рисунках соответствуют капиллярным движениям жидкости, порождаемым тепловым движением молекул и наличием поверхностного натяжения; ветви с номерами, большими 3, порождаются действием эффектов релаксации вязкости и поверхностного натяжения (подробнее о них см. [3,4]).

Зависимости от параметра α^2 , характеризующего баланс делений на свободной поверхности жидкости, вещественной Re $g = \text{Rey}(\alpha^2)$ и мнимой Im $y = \text{Im } y(\alpha^2)$ компонент безразмерной частоты, рассчитанные при: $a - \gamma = 0$, $\delta = 0.25$; b - f = 1, $\gamma = 0.4$, $\delta = 0$; c - f = 1, $\gamma = 0.4$, $\delta = 0.25$.

35

Несложно видеть, что учет обсуждаемых релаксационных эффектов существенно усложняет спектр реализующихся капиллярных движений жидкости. Как показывают численные расчеты, взаимодействие эффектов релаксации вязкости и поверхностного натяжения приводит к деформации спектра, получающегося простым суммированием новых ветвей дисперсионного уравнения, связанных с каждым из обсуждаемых эффектов по отдельности. Так, например, область существования релаксационного волнового движения (ветвь 6) на рисунке, *b*, появление которого связано с эффектом релаксации поверхностного натяжения, при увеличении параметра δ от нуля сокращается и при $\delta = 0.216$ ветвь вообще исчезает.

Как показано в [8], по абсциссе точки пересечения ветвей 1, 2, 3 можно найти максимальное значение k (или, что тоже самое, минимальную длину волны $\lambda = \lambda_{\min}$) капиллярных волн, реализующихся в системе.

Пусть $\alpha^2 = C$ есть абсцисса точки ветвления ветвей (1, 2, 3), тогда из соотношения

$$\alpha^{2} = \frac{1}{\rho\gamma^{2}} \left(\frac{\sigma_{0}}{k} - \frac{4\pi\varkappa^{2}}{k^{2}} \right) = \frac{\sigma_{0}}{2\pi\rho\nu^{2}} \left(\lambda - \frac{2\varkappa^{2}}{\sigma_{0}}\lambda^{2} \right) = C$$

можно найти минимальную длину капиллярной волны, существующей в системе (не гасящейся вязкостью или релаксационными эффектами):

$$\lambda_{\min} pprox 2\pi rac{
ho
u^2 C}{\sigma_0} \left(1 + rac{
ho
u^2 C}{\sigma_0} \cdot rac{4\pi \varkappa^2}{\sigma_0}
ight)$$

Дальнейшие рассуждения проведем на примере конкретной жикости — воды. Согласно данным [4], в отсутствие релаксационных эффектов при $\varkappa = 0$ имеем $C \approx 0.58$, что соответствует $\lambda_{\min} \approx 0.05 \,\mu\text{m} = 50 \,\text{nm}$. Из рисунка, f *a* при $\gamma = 0$ несложно найти $C \approx 0.91$, что дает $\lambda_{\min} \approx 78 \,\text{nm}$ при $\varkappa = 0$. Из рисунка 1, *b* при $\delta = 0$ получим $C \approx 0.86$ и $\lambda_{\min} \approx 74 \,\text{nm}$ при $\varkappa = 0$. Наконец, из рисунка, *c* при $\gamma = 0.4$, $\delta = 0.25$ можно найти $C \approx 1.47$ и $\lambda_{\min} \approx 127 \,\text{nm}$ при $\varkappa = 0$. При $\varkappa \approx 0.5\varkappa$ (\varkappa_* — величина поверхностной плотности заряда, критическая для реализации неустойчивости Тонкса–Френкеля) значения λ_{\min} увеличиваются в 2 раза. Несложно видеть, что при суммарном действии обоих учитываемых релаксационных эффектов их совместное гасящее влияние на капиллярные волны определяется неаддитивным образом.

Список литературы

- [1] Григорьев А.И., Ширяева С.О. // Изв. РАН. МЖГ. 1994. № 3. С. 3–22.
- [2] Быковский Ю.А., Маныкин Э.А., Полуэктов П.П. и др. // ЖТФ. 1976. Т. 46. № 11. С. 2211–2213.
- [3] Ширяева С.О., Григорьев О.А., Григорьев А.И. // ЖТФ. 1966. Т. 66. № 10. С. 31–46.
- [4] Ширяева С.О., Григорьев О.А., Муничев М.И., Григорьев А.И. // ЖТФ. 1966. Т. 66. № 10. С. 47–62.
- [5] Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959. 699 с.
- [6] Алиев И.Н., Филиппов А.В. // МГ. 1989. № 4. С. 94–98.
- [7] Григорьев А.И., Григорьев О.А., Ширяева С.О. // ЖТФ. 1992. Т. 62. № 9. С. 12–21.
- [8] Антонюк П.Н. // ДАН СССР. 1986. Т. 286, № 6. С. 1324-1328.