05;11;12

Структурная и шумовая характеризация пленок VO₂ на SiO₂/Si подложках

© М.В. Байдакова, А.В. Бобыль, В.Г. Маляров, В.В. Третьяков, И.А. Хребтов, И.И. Шаганов

С.-Петербургский государственный технический университет

Поступило в Редакцию 17 января 1997 г.

С целью изучений микроприроды дефектов флуктуаторов — источников низкочастотного фликкер-шума — проведены комплексные структурные и электрофизические исследования пленок VO₂ на SiO₂/Si подложках. Было установлено, что интенсивность шума определяется величиной флуктуаций микронапряжений ($\langle \varepsilon \rangle = \{ \langle (\delta c/c)^2 \rangle \}$, где c — параметр решетки вдоль c-оси, параллельной [011]) в блоках, из которых она состоит. Определены размеры блоков вдоль c-оси ($t_c \sim 1000$). Сделано предположение, что в образцах имеются два типа дефектов флуктуаторов: 1) атомы V, флуктуирующие между двумя ближайшими междоузлиями, 2) атомы V, флуктуирующие между ними же вблизи дефектов решетки.

Интерес к VO₂ пленкам связан с возможностью использования резкой температурной зависимости их свойств в различных прикладных задачах [1–7], а также с изучением физики соответствующего структурнофазового перехода [1–10]. Низкочастотные фликкер-шумы могут указывать на хаотичекие изменения микроструктуры исследуемого образца, а именно на наличие так называемых дефектов флуктуаторов [10–12], и, следовательно, могут быть эффективным критерием технологического контроля этих изменений.

В данной работе с целью изучений микроприроды дефектов флуктуаторов проведены комплексные структурные (рентгеновский структурнофазовый анализ, рентгеноспектральный микроанализ, сканирующая микроскопия) и электрофизические (интенсивность фликкер-шумов, величина сопротивления и ее температурная зависимость) исследования пленок VO₂ на SiO₂/Si подложках, полученных магнетронным распылением. Было установлено, что интенсивность фликкер-шумов определяется величиной флуктуаций микронапряжений ($\langle \varepsilon \rangle = \{ \langle (\delta c/c)^2 \rangle \}$, где c параметр решетки вдоль [011]) в блоках, из которых она состоит.

58

No	Паран	метры техн	ологии	Состав пленки (отн. стехиомет-		Размеры	
1 12	Давление	е в камере	S1O ₂			MOCTURA	
образца	роста, мТор		подслоя	рического)		мостика	
	0	Ar+O	толщина,	V	0	длина-ширина-	
			Å			–толщина, мкм	
4	0.21	2.0	4110	1.009	1	750-2100-0.36	
5	0.21	1.9	600	1.011	1.001	40-100-0.33	
6	0.23	2.1	1750	1.011	1.002	30-100-0.37	
7	0.21	1.9	6500	0.995	0.998	30-100-0.34	

Продолжение таблицы

N₂	Электрофизические параметры мостиков			Ширина рентге- новских линий ω_{2y}		Параметры блоков	
образца	<i>R</i> , кОм, 300 К	<i>Е</i> _{акт} , эВ	Парам. Хоуге при 10 Гц	(011) град	(022) град	<i>t</i> _c , Å	$\langle \varepsilon \rangle \! imes \! 10^{-3}$
4	3.1	0.20	6	0.164	0.35	900	5.2
5	74.3	0.21	90	0.191	0.41	1200	7.3
6	12.1	0.16	60	0.188	0.428	1100	7.1
7	6.2	0.13	25	0.190	0.415	1200	7.4

Определены размеры блоков вдоль *c*-оси ($t_c \sim 1000$ Å). Эти результаты позволили высказать предположение о микроприроде дефектов флукту-аторов.

В таблице указаны параметры, по которым производилось варьирование технологии магнетронного распыления, и толщина SiO₂ подслоя, нанесенного на Si:Р подложку типа КЭФ 4, 5. Для определения толщины подслоя, а также состава и толщины VO₂ пленки был использован рентгеноспектральный микроанализатор "Camebax" и специально разработанная программа, учитывающая многослойность области формирования регистрируемого сигнала [13]. Используемая методика микроанализа не позволила определить с высокой точностью абсолютные значения состава пленок по кислороду и поэтому в таблице приведены значения, нормированные на его содержание в образце № 4.

Рис. 1. Картина рентгеновской дифракции для подложки с подслоем и двух образцов (нумерация соответствует таблице). СиК_α излучение ($\lambda = 1.541$ Å). Отмечены дифракционные максимумы структур: $o - VO_2^*$, $- V_2O_4$ согласно стандартам [14], соответственно № 9–142 и № 19–1398. Приведены индексы Миллера для VO₂.

Как показали исследования, проведенные на электронном сканирующем микроскопе "CamScan", на поверхности пленок отсутствуют включения и неровности с размерами > 0.1 мкм.

Структурно-фазовые исследования подслоя и пленок были проведены на однокристальном рентгеновском дифрактометре с вращающимся медным анодом фирмы "Rigaku". Результаты приведены в таблице и на рис. 1.

Известно [7], что при магнетронном нанесении на подложках SiO₂/Si формируются пленки VO₂ с преимущественным направлением роста блоков вдоль [011]. Используя [14], можно убедиться, что на картине дифракции (рис. 1) наблюдаются максимумы VO₂ ((011), (022), (012)

и (021)) и серия слабых максимумов. Последние могут быть связаны с отражениями от некоторого набора плоскостей структуры V_2O_4 , идентификация которых не представляется возможной, так как структура V_2O_4 не расшифрована [14]. По положению дифракционных максимумов рассчитывалось межплоскостное расстояние для плоскостей типа (011) VO_2 и оказалось, что оно в пределах точности измерений совпадает с соответствующим расстоянием для VO_2 в свободном состоянии, что и следовало ожидать при наличии аморфного SiO₂ подслоя. Структурное совершенство блоков не велико: кривая качания > 6° для (011) максимума.

Таким образом, полученные результаты позволяют утверждать, что пленки с высокой точностью имеют стехиометрический состав VO₂ и являются блочными–мозаичными [15] для обеих фаз. Значительная часть блоков имеет фазовый состав соединения VO₂, а межблочные прослойки — V₂O₄. В рамках этой модели, используя приведенные в таблице ширины линий, можно оценить размеры блоков вдоль *с*-оси t_c и величину флуктуаций микронапряжений $\langle \varepsilon \rangle$. Известно [15], что в рамках блочной модели ширина линий $\omega_{2\nu}$ состоит из двух компонент и следующим образом зависит от величины брэговского угла $v_{\rm Бр}$:

$$\omega_{2\nu}^{2} = \omega_{\langle \varepsilon \rangle}^{2} + \omega_{c}^{2} = (2\langle \varepsilon \rangle \operatorname{tg} \nu_{\mathrm{bp}})^{2} + \left(\frac{\lambda}{2t_{c} \cos \nu_{\mathrm{bp}}}\right)^{2}, \qquad (1)$$

где ω_c и $\omega_{\langle \varepsilon \rangle}$ ширины, обусловленные наличием блоков и флуктуациями величины микронапряжений в них соответственно, λ — длина волны рентгеновского излучения. Результаты расчетов также приведены в таблице.

Для проведения электрофизических измерений были изготовлены мостики с указанными в таблице размерами, которые имели Іп контакты с Ті подслоем. Образцы имели полупроводниковый характер температурной зависимости сопротивления (R) с указанными в таблице энергиями активации (E_{akt}). Для измерения интенсивности шумов использовался металлический криостат и усилитель со специальным малошумящим входным транзистором. Для характеризации шумовых свойств образцов использовался безразмерный параметр Хоуге [16] (α). При расчете α объем элементарной ячейки считался равным 37 (Å)³ [17,18] и учитывалась величина энергетического зазора между d-уровнями валентной зоны и p-уровнями зоны проводимости [19], которая принималась равной $2E_{akt}$. Полученные величины α на частоте 10 Гц

Рис. 2. Зависимость параметра Хоуге от частоты и энергии, рассчитанной с использованием соотношения (2). Нумерация кривых соответствует таблице.

также приведены в таблице, а соответствующие частотные зависимости на рис. 2.

В выбранных на рис. 2 координатах частотная зависимость интенсивности шума типа 1/f имела бы вид горизонтальной линии (т. е. $\alpha = \text{const}$). Наблюдаемый в эксперименте характер зависимости $\alpha(f)$ впервые был описан в [5] и можно объяснить в рамках упомянутой выше модели дефектов флуктуаторов. А именно, путем использования представления о распределении дефектов флуктуаторов по спектру энергий E, шкала которой также приведена на рис. 2 и которая определяется из соотношения

$$E = -kT \ln 2\pi f \tau_D, \tag{2}$$

где $(au_D)^{-1}$ — дебаевская частота ($\sim 10^{-13}\,{
m cek}^{-1}$).

Прежде чем обсудить возможный вид спектральной зависимости $\alpha(E)$ и микромодель дефектов флуктуаторов необходимо выявить наи-

Рис. 3. Модель спектра двух типов дефектов флуктуаторов (I и II) для двух образцов; показаны соответствующие экспериментальные точки.

более сильную структурно-шумовую корреляцию. Сопоставляя структурные результаты, полученные на разных образцах, с величиной параметра Хоуге, можно сделать вывод, что таковой является зависимость $\alpha(\langle \varepsilon \rangle)$. Ранее она была обнаружена при исследовании ВТСП пленок YBa₂Cu₃O₇ [12]. Оказалось, что интенсивность фликкер-шумов экспоненциально сильно зависит от величины $\langle \varepsilon \rangle$ в блоках, из которых состоит пленка. Характер зависимости имеет вид

$$\ln \alpha \sim \langle \varepsilon \rangle^2$$
 (3)

и наблюдается в случае пленок VO₂, в чем можно убедиться испольузя данные, приведенные в таблице и на рис. 2. Зависимость (3) можно получить в рамках следующей модели дефектов флуктуаторов. Атомы решетки совершают хаотические, термически активированные прыжки на пустые места незаполненной подрешетки (или по мождоузлиям). Хаотические поля микронапряжений приводят к соответствующим

флуктуациям высоты барьера двухъямного потенциала, через который происходят прыжки, и разницы между энергиями минимумов.

Для интерпретации результатов рис. 2 необходимо предположить наличие двух типов дефектов флуктуаторов. Схематически их спектр дефектов флуктуаторов изображен на рис. 3, где предполагается гауссовый вид функции распределения дефектов флуктуаторов по энергиям. Оценочная энергия максимума типа $I \sim 1$ эВ. Примерно такую же оценочную величину можно получить из результатов работы [20] по исследованию внутреннего трения в VO₂ порошках. Относительно модели дефектов флуктуаторов типа I можно сделать следующее предположение. Во-первых, следует заметить, что энергия образования дефектов в окислах значительно больше этих значений (~ 2-3 эВ [21]). Однако недавно было обнаружено, что в рутиловых структурах, в частности в окислах TiO₂ [22], при наличии примесей замещения наблюдается значительная анизотропная диффузия катионных атомов решетки по междоузлиям с существенно меньшими энергиями ~ 1.4 эВ. Таким образом, можно предположить, что дефектами флуктуаторов типа I являются атомы V, совершающие прыжки между двумя соседними междоузлиями, а роль примесей замещения могут играть неконтролируемые примеси или другие валентные состояния атомов V. Относительно дефектов флуктауаторов типа II можно сделать предположение, что ими также являются прыжки атомов V по междоузлиям, расположенным вблизи дефектов решетки, или атомов V другой валентности [21].

Авторы выражают благодарность В.С. Вихнину, А.И. Морозову, Р.А. Сурису, Ф.А. Чудновскому за ряд полезных замечаний.

Работа выполнена при поддержке гранта РФФИ № 9602-18563.

Список литературы

- [1] Бугаев А.А., Захарченя Б.П., Чудновский Ф.А. Фазовый переход металлполупроводник и его применение. Л.: Наука, 1979. 183 с.
- [2] Tsuda N, Nasu K., Yanase A., Siratori K. // Springer Series in Solid-State Sciences. 1991. V. 94. 323 p.
- [3] Shaw M.P., Mitin V.V., Scholl E., Grubin H.L. The Physics of instabilities in solid state electron devices. New York and London. Plenum Press. 1992. 467 p.
- [4] Spectroscopy of Mott insulators and correlated metals / By A. Fujimori, Y. Tokura // Springer Series in Solid-State Sciences. 1995. V. 119. 265 p.

- [5] Андреев В.Н., Захарченя Б.П., Капшин Ю.С., Носкин В.А., Чудновский Ф.А. // ЖЭТФ. 1980. Т. 79. С. 1353–1359.
- [6] Вихнин В.С., Гончарук И.Н., Давыдов В.Ю., Чудновский Ф.А., Шадрин Е.Б. // ФТТ. 1995. Т. 37. С. 3580–3596.
- Jin P., Tanemura S. // Jpn. J. Appl. Phys. 1994. V. 33. P. 1. N 3A. P. 1478–1483; 1995. V. 34. P. 1. N 5A. P. 2459–2460.
- [8] Wentzcovitch R.M., Schulz W.W., Allen P.B. // Phys. Rev. Lett. 1994. V. 72.
 P. 3389–3392.
- [9] Rice T.M., Launois H., Pouget J.P. // Phys. Rev. Lett. 1994. V. 73. P. 3043-3043.
- [10] Коган Ш.М., Нагаев К.Е. // ФТТ. 1982. Т. 24. С. 1921–1927.
- [11] Galperin Y.M., Karpov V.G., Kozub V.I. // Adv. Phys. 1989. V. 38. P. 669-737.
- [12] Bobyl A.V., Gaevskii M.E., Karmanenko S.F., Kutt R.N., Suris R.A., Khrebtov I.A., Tkachenko A.D., Morosov A.I. // J. Appl. Phys. 1997 (в печати).
- [13] Kazakov S.V., Konnikov S.G., Tretykov V.V. // X-ray spectr. 1990. V. 19. P. 269–273.
- [14] JCPDS. International Centre for Diffraction Data. Swarthmore, PA, USA.
- [15] Warren B.E., Averbach B.L. // J. Appl. Phys. 1950. V. 21. P. 595-601.
- [16] Hooge F.N., Kleinpenning T.G.M., Vandamme L.K.L. // Rep. Prog. Phys. 1981. V. 44. P. 479.
- [17] Gupta M., Freeman A.J., Ellis D.E. // Phys. Rev. B. 1977. V. 16. P. 3338-3350.
- [18] Gervais F., Kress W. // Phys. Rev. B. 1985. V. 31. P. 4809-4814.
- [19] Abbate M., De Groot F.M.F., Fuggle J.C., Ma Y.J., Chen C.T., Sette F., Fujimori A., Ueda Y., Kosuge K. // Phys. Rev. B. 1991. V. 43. P. 7263–7266.
- [20] Zhang J.X., Yang Z.H., Fung P.C.W. // Phys. Rev. B. 1995. V. 52. P. 278-284.
- [21] Одынец Л.Л., Орлов В.М. Анодные оксидные пленки. Л.: Наука, 1990. 200 с.
- [22] Ruebenbauer K., Wdowik U.D., Kwater M. // Phys. Rev. B. 1996. V. 54.
 P. 4006–4020.