Резонансные трехмерные фотонные кристаллы

© Е.Л. Ивченко, А.Н. Поддубный

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 24 мая 2005 г.)

Развита теория экситон-поляритонной зонной структуры резонансного трехмерного фотонного кристалла при произвольном диэлектрическом контрасте и произвольной эффективной массе экситона, который возбуждается в одном из композиционных материалов. Расчет проводился для периодического массива полупроводниковых шариков, помещенных в диэлектрическую матрицу. Показано, что положение нижних ветвей поляритонной дисперсии монотонно зависит от экситонной эффективной массы и определяется взаимодействием света с первыми несколькими состояниями механического экситона, размерно квантованного внутри каждого шарика. Рассмотрено влияние экситонных состояний на запрещенную зону фотонного кристалла в направлении [001], допускающее аналитическое описание в рамках двухволнового приближения.

Работа поддержана Министерством науки и образования РФ и Российского фонда фундаментальных исследований (грант № 05-02-16372).

PACS: 42.70.Qs, 71.35.-y

1. Введение

Фотонными кристаллами принято называть среды, у которых диэлектрическая проницаемость периодически меняется в пространстве с периодом, допускающим брэгговскую дифракцию света. Концепция фотонного кристалла была сформулирована Яблоновичем [1] и Джоном [2]. Теория фотонных кристаллов разрабатывалась в большом числе последующих работ, см. например [3-7]. Главная цель исследований — определение фотонной зонной структуры и анализ разрешенных и запрещенных минизон при различных направлениях волнового вектора в первой зоне Бриллюэна. Простейшей реализацией фотонного кристалла является структура, состоящая из двух материалов А и В с разными диэлектрическими постоянными ε_A и ε_B : периодическая слоистая среда ... А/В/А/В... в случае одномерных фотонных кристаллов и периодические массивы цилиндров или шариков из материала А, помещенные в диэлектрическую матрицу В, в двумерных и трехмерных фотонных кристаллах соответственно. Периодические структуры, в которых диэлектрическая проницаемость одного из двух композиционных материалов как функция частоты ω имеет полюс на некоторой резонансной частоте, удобно выделить в особый класс резонансных фотонных кристаллов, в которых нормальными световыми волнами являются поляритоны. В [8,9] расчет дисперсии световых волн в фотонных кристаллах проводился с учетом частотной зависимости диэлектрической проницаемости в рамках локальной материальной связи $\mathbf{D} = \varepsilon_A(\omega) \mathbf{E}$ между электрической индукцией и электрическим полем. В [10] дисперсия экситонных поляритонов в резонансном фотонном кристалле рассчитывалась с учетом только одного размерно-квантованного уровня механического экситона в шарике А и в пренебрежении различием между диэлектрической проницаемостью матрицы є_в и фоновой диэлектрической проницаемостью є_а в материале А. В настоящей работе теоретически исследована дисперсия экситонных поляритонов в резонансном фотонном кристалле при учете всех возможных уровней размерного квантования экситона и при наличии диэлектрического контраста, т.е. при $\varepsilon_a \neq \varepsilon_B$.

2. Постановка задачи и метод расчета

В настоящей работе теория зонной структуры резонансных фотонных кристаллов строится на примере периодического массива шариков из материала А, упакованных в гранецентрированную кубическую (ГЦК) решетку и помещенных в матрицу из материала В. Рассматриваемая структура характеризуется семью параметрами: R, a, ε_B , ε_a , ω_{LT} , ω_0 и M. Здесь R — радиус шариков; а — постоянная ГЦК решетки (вставка на рис. 1); ε_B — диэлектрическая проницаемость матрицы; ω_0, ω_{LT} и M — резонансная частота, продольно-поперечное расщепление и трансляционная эффективная масса триплетного 1s-экситона, возбуждаемого в шариках А соответственно; ε_a — фоновая диэлектрическая проницаемость, учитывающая вклад в диэлектрический отклик всех остальных электронно-дырочных возбуждений. Таким образом, в диэлектрической проницаемости объемного материала А

$$\varepsilon_A(\omega, q) = \varepsilon_a + \frac{\varepsilon_a \omega_{LT}}{\omega_{\text{exc}}(q) - \omega}, \quad \omega_{\text{exc}}(q) = \omega_0 + \frac{\hbar q^2}{2M}$$
 (1)

учитывается как частотная, так и пространственная дисперсия, т.е. зависимость и от частоты света ω , и от его волнового вектора **q**. Радиус *R* выбирается так, чтобы, с одной стороны, шарики не перекрывались, т.е. $R < a/\sqrt{8}$, но, с другой стороны, чтобы их радиус превышал боровский радиус 1*s*-экситона в материале *A* и экситон можно было рассматривать как точечную частицу массы *M*. Частотной зависимостью параметров ε_B и ε_a пренебрегается. Кроме того, мы считаем

Рис. 1. Экситон-поляритонная зонная структура резонансного фотонного кристалла, в котором ГЦК решетка из шариков *A* помещена в матрицу *B*. Расчет проводился в пренебрежении диэлектрическим контрастом и при значениях параметров, указанных в тексте. На вставке в центре рисунка схематически показана ГЦК решетка из шариков *A* радиуса *R* с постоянной решетки *a*.

материал A изотропным и учитываем в дальнейшем только 1*s*-экситонные состояния, возбуждаемые в этом материале. Таким образом, задача сводится к решению системы двух векторных уравнений: волнового уравнения

rot rot
$$\mathbf{E}(\mathbf{r}) = \left(\frac{\omega}{c}\right)^2 \left[\varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r}) + 4\pi \mathbf{P}_{\text{exc}}(\mathbf{r})\right]$$
 (2)

и материального уравнения для вклада 1*s*-экситона в диэлектрическую поляризацию

$$\left(-\frac{\hbar}{2M}\Delta + \omega_0 - \omega\right)\mathbf{P}_{\text{exc}}(\mathbf{r}) = \frac{\varepsilon_a \omega_{LT}}{4\pi} \mathbf{E}(\mathbf{r}), \qquad (3)$$

где $\varepsilon(\mathbf{r}) = \varepsilon_a$ внутри шариков и $\varepsilon(\mathbf{r}) = \varepsilon_B$ вне шариков, $\mathbf{E}(\mathbf{r})$ и $\mathbf{P}_{\text{exc}}(\mathbf{r})$ — электрическое поле и экситонная поляризация на частоте ω . На сферической поверхности, разделяющей материалы A и B, задаются стандартные граничные условия Максвелла: непрерывность тангенциальных составляющих электрического и магнитного полей, и граничное условие Пекара для экситонной поляризации: обращение в нуль вектора $\mathbf{P}_{\text{exc}}(\mathbf{r})$ при $|\mathbf{r} - \mathbf{a}| = R$, где векторы трансляции \mathbf{a} определяют положение центров шариков A. С учетом периодичности структуры решения уравнений (2) и (3) ищутся в форме блоховских функций, удовлетворяющих условию

$$\mathbf{E}_{\mathbf{k}}(\mathbf{r}+\mathbf{a}) = e^{\imath \, \mathbf{k} \mathbf{a}} \, \mathbf{E}_{\mathbf{k}}(\mathbf{r}). \tag{4}$$

Здесь **k** — волновой вектор экситонного поляритона, заданный в первой зоне Бриллюэна, которая для ГЦК пространственной решетки имеет форму четырнадцатигранника с шестью квадратными гранями и восемью шестиугольными гранями.

В работе рассчитывалась дисперсионная зависимость ω_{nk} , где n — номер экситон-поляритонной ветви. При численном расчете в качестве основного использовался фотонный аналог метода Корринги–Кона–Ростокера (ККР) [11–13], в котором (а) электрическое поле разлагается по сферическим волнам, точнее по векторным сферическим функциям, центрированным в точках $\mathbf{r} = \mathbf{a}$ и (б) в результате независимого анализа рассеяния света на одиночном шаре и структурного фактора дисперсионное уравнение приводится к виду

$$\left|\delta_{j'j}\delta_{m'm}\delta_{\sigma'\sigma} - G_{j'm'\sigma',jm\sigma}(\mathbf{k},\omega)R_{j\sigma}(\omega)\right| = 0.$$
(5)

Здесь $R_{j\sigma}$ — коэффициенты рассеяния сферической волны на одном шарике A, которые зависят от полного углового момента j и индекса поляризации σ , различающего

магнитную и электрическую сферические гармоники, но не зависят от проекции углового момента т. Для рассеивателя в форме шара эти коэффициенты связывают падающее поле $\mathbf{E}_0(\mathbf{r}) \propto \mathbf{J}_{\mathit{im\sigma}}(\mathbf{r})$ с рассеянным полем $\mathbf{E}_{sc}(\mathbf{r}) \propto \mathbf{H}_{jm\sigma}(\mathbf{r})$, где $\mathbf{J}_{jm\sigma}$, $\mathbf{H}_{jm\sigma}$ — векторные сферические функции [13]. В работе [14] величины $R_{j\sigma}(\omega)$ рассчитаны с учетом экситонного резонанса в шарике А и конечной эффективной массы экситона М. В отличие от матрицы рассеяния на одном шарике, которая содержит только диагональные компоненты $R_{jm\sigma} \equiv R_{j\sigma}$, у матрицы структурных коэффициентов $G_{j'm'\sigma',jm\sigma}(\mathbf{k},\omega)$ отличны от нуля как диагональные, так и недиагональные компоненты. Заметим, что от частоты ω зависят обе матрицы, тогда как от волнового вектора поляритона к зависит только структурная матрица G. В то же время G не зависит от экситонных параметров и совпадает с матрицей, рассмотренной в работах [11–13], в которых экситонные состояния не учитывались.

В разд. 4 при анализе отдельных вкладов в поляритонную дисперсию размерно-квантованных экситонных состояний воспользуемся методом функций Грина, а в разд. 5 — двухволновым приближением, допускающим аналитическое описание.

3. Поляритонная дисперсия при конечной массе экситона

Сначала мы сосредоточим внимание на сугубо экситонных эффектах и пренебрежем диэлектрическим контрастом, положив $\varepsilon_a = \varepsilon_B$. Тогда в отсутствие экситонфотонного взаимодействия, т.е. при $\omega_{LT} = 0$, среда становится оптически однородной, и распространяющиеся в ней фотоны имеют линейную дисперсию $\omega = cq/n_B$ с показателем преломления $n_B = \sqrt{\varepsilon_B}$. В схеме приведенных зон эта однозначная связь между частотой и волновым вектором света **q** превращается в многозонную дисперсионную кривую

$$\omega_{\mathbf{k}} = c \, |\mathbf{k} + \mathbf{b}| / n_B, \tag{6}$$

где **b** — вектор обратной решетки, такой что вектор $\mathbf{k} = \mathbf{q} - \mathbf{b}$ лежит в первой зоне Бриллюэна. При $\omega_{LT} \neq 0$ происходит смешивание фотонных и экситонных состояний и образование гибридных поляритонных возбуждений со сложной многозонной дисперсией $\omega_{n\mathbf{k}}$. При этом волна (n, \mathbf{k}) является смесью двух или нескольких фотонных состояний (6) с одним и тем же \mathbf{k} , но различными значениями \mathbf{b} .

На рис. 1 представлена дисперсия экситонных поляритонов для ГЦК решетки, рассчитанная при следующих значениях параметров структуры:

$$\varepsilon_a = \varepsilon_B = 10, \qquad R = a/4, \qquad \hbar\omega_1 = 2 \text{ eV},$$
$$\omega_{LT} = 5 \times 10^{-4} \omega_1,$$
$$P \equiv \left(\frac{\sqrt{3} \pi c}{\omega_1 n_B a}\right)^3 = 1.1, \qquad M = 0.5 m_0,$$

где m_0 — масса свободного электрона в вакууме и вместо затравочной частоты ω_0 введена резонансная

частота

$$\omega_1 = \omega_0 + \frac{\hbar}{2M} \left(\frac{\pi}{R}\right)^2 \tag{7}$$

основного состояния экситона, размерно-квантованного в шаре радиуса R. Заметим, что настройке частоты (7) на брэгговский резонанс $\omega_1 = ck_L/n_B$ в точке L зоны Бриллюэна с $k_L = \sqrt{3} \pi/a$ или $\omega_1 = ck_X/n_B$ в точке X с $k_X = 2\pi/a$ отвечают значения P = 1 и $P = 3\sqrt{3}/8 \approx 0.65$ соответственно. При P = 1.1 антипересечение горизонтальной прямой $\omega = \omega_1$ (ветвь "голых" экситонов) и прямой $\omega = ck/n_B$ (ветвь "голых" фотонов) происходит внутри зоны Бриллюэна при k, составляющем примерно 97% от k_L и 84% от k_X . Для полноты картины зависимость $\omega(\mathbf{k})$ показана не только для высокосимметричных направлений $\mathbf{k} \parallel [001]$ (точки Δ) и $\mathbf{k} \parallel [111]$ (точки Λ), но и на отрезках прямых X - W, W - K, X - U и U - L.

На рис. 1 область частот отрезана сверху так, чтобы остались только несколько нижних ветвей дисперсионной кривой. В отрезанной области дисперсия представлена густой сетью поляритонных ветвей, которые получаются в результате антипересечения "голых" фотонных ветвей (6) с плотным набором дискретных уровней размерного квантования экситона. Эта сеть имеет запутанный характер, сложный для изображения. Поэтому в настоящей работе поставлена цель проанализировать эволюцию нижних поляритонных ветвей с изменением параметров фотонного кристалла.

На рис. 2 сплошными кривыми показаны те же дисперсионные ветви, что и на предыдущем рисунке, но в увеличенном масштабе вблизи точек X и L. Для сравнения штрихпунктиром изображена нижняя ветвь дисперсионной кривой, рассчитанная при учете только основного экситонного уровня размерного квантования, для чего достаточно было при расчете уменьшить эффективную массу M до $0.01m_0$ и понизить ω_0 так, чтобы частота ω_1 в (7) осталась неизменной. Штрихпунктирные кривые совпадают с результатом расчета дисперсии экситонных поляритонов методом, развитым в работе [10]. Штриховой кривой показан противоположный предельный случай очень тяжелых экситонов, когда $M \to \infty$. В этом случае связь между экситонной поляризацией и электрическим полем становится локальной

$$\mathbf{P}_{\mathrm{exc}} = \chi \mathbf{E}, \qquad \chi = \frac{\varepsilon_a}{4\pi} \frac{\omega_{LT}}{\omega_0 - \omega}$$

Поэтому значения **k**, отвечающие заданной частоте ω , можно находить так же, как и для нерезонансного фотонного кристалла с диэлектрическими проницаемостями ε_B и $\varepsilon_A = \varepsilon_a + 4\pi\chi$. Расчет показывает, что штриховая кривая на рис. 2 практически не отличается от нижней ветви, получаемой по формуле (5) при $M = 5m_0$. Нижняя поляритонная ветвь формируется в результате "отталкивания" фотонной ветви (6) с **b** = 0 в длинноволновую сторону из-за взаимодействия с экситонными уровнями размерного квантования. При $M \to 0$, но $\omega_1 = \text{const}$, на эту ветвь заметное влияние оказывает

Рис. 2. Дисперсия экситонных поляритонов в резонансном фотонном кристалле в спектральной области, примыкающей к резонансной частоте нижнего экситонного уровня ω_1 , и для волновых векторов $\mathbf{k} \parallel [111]$ (точки Λ) и $\mathbf{k} \parallel [001]$ (точки Δ). Дисперсионные кривые рассчитывались при эффективной массе экситона $M = 0.5m_0$ (сплошные кривые), $M \to \infty$ (штриховые кривые) и $M \to 0$ (штрихпунктирные кривые). Значения остальных параметров те же, что и при расчете рис. 1.

только нижний уровень (7). При $M \to \infty$ остальные уровни оказывают на нее максимально возможное влияние, так как в этом пределе их резонансные частоты стремятся к одному и тому же значению ω_0 . Поэтому нижняя поляритонная ветвь, отвечающая конечной массе M, должна лежать всегда между штрихпунктирной и штриховыми кривыми в согласии с результатом расчета, представленного на рис. 2.

Анализ вкладов в поляритонную дисперсию отдельных уровней размерного квантования экситона

Введем обозначения $\omega_X(M)$ для частоты в точке X на нижней поляритонной ветви при эффективной массе M экситона в материале A, $\omega_X(0)$ и $\omega_X(\infty)$ для значений этой частоты при $M \to 0$ и $M \to \infty$ и, наконец, $\bar{\omega}_X$ для среднего арифметического $[\omega_X(0) + \omega_X(\infty)]/2$. Из рис. 2 видно, что разность $\omega_1 - \bar{\omega}_X$ заметно превышает разность $\omega_X(0) - \omega_X(\infty)$. Это означает, что основной вклад в положение частоты $\omega_X(M)$ должно вносить экситон-фотонное смешивание с основным уровнем (7). В данном разделе подробнее проанализируем влияние основного и возбужденных уровней размерного квантования экситона на нижнюю поляритонную ветвь. С этой целью, следуя [14] и используя метод функции Грина, разложим решение уравнения (3) с произвольной функцией $\mathbf{E}(\mathbf{r})$ в ряд

$$\mathbf{P}_{\text{exc}}(\mathbf{r}) = \frac{\varepsilon_a}{4\pi} \sum_{\nu} \frac{\omega_{LT}}{\omega_{\nu} - \omega} \sum_{\mathbf{a}} \Phi_{\nu}(\mathbf{r} - \mathbf{a})$$
$$\times \int_{|\mathbf{r}' - \mathbf{a}| < R} \Phi_{\nu}^*(\mathbf{r}' - \mathbf{a}) \mathbf{E}(\mathbf{r}') d^3 r'$$
(8)

по собственным состояниям механического экситона в шаре с бесконечно высокими барьерами. Здесь индекс $v = (n_r, l, m)$, характеризующий состояния экситона, включает соответственно радиальное квантовое число, угловой момент и его проекцию на ось z, ω_v — резонансная частота экситона в состоянии v. Заметим, что нормированные на единицу функции $\Phi_v(\mathbf{r})$ удовлетворяют уравнению (2) с $\omega = \omega_v$, но без неоднородного члена, т.е. с $\mathbf{E}(\mathbf{r}) \equiv 0$, для шара с центром в точке $\mathbf{r} = 0$. Частоты ω_v удобно представить в виде $\omega_0 + (\hbar/2MR^2)x_{n_r,l}^2$, где $x_{n_r,l}$ — безразмерные числа. Приведем эти числа для нескольких нижних энергетических уровней [15]: π (1s), 4.493 (1p), 5.764 (1d), 2π (2s), 6.988 (1f), где в скобках указаны значение n_r

Рис. 3. Зависимость спектра экситонных поляритонов от числа экситонных уровней, учитываемых при расчете дисперсионной кривой методом функции Грина. Кривые *1–4* — расчет при учете соответственно одного, двух, трех и четырех нижних уровней; кривая 5 — точный расчет с учетом всех уровней размерного квантования механического экситона. Значения параметров те же, что и при расчете рис. 1.

и стандартный символ орбитального момента: *s* для l = 0, p для l = 1 и т.д. Подчеркнем, что символы в скобках обозначают размерно-квантованное состояние экситона как целого в отличие от внутреннего 1s-состояния, которое здесь только и учитывается. Подставляя разложение (8) в волновое уравнение (2) и оставляя в сумме по *v* один любой член или конечное число членов, можно изучать влияние этих членов на формирование поляритонной дисперсии. Результаты анализа показаны на рис. 3. Видно, что (а) главную роль в положении частоты $\omega_x(M)$ играет основной экситонный уровень 1s, (б) на частоту поляритона в точках X и L уровень 1pне влияет и (в) учета дополнительных уровней 1d и 2s достаточно для точки X, тогда как в точке L сумма по vсходится медленнее. Очевидно, это различие связано с выбором при расчете значения P = 1.1, при котором эффект антипересечения вблизи точки L значительно сильнее, чем в точке Х.

5. Поляритоны в фотонном кристалле с диэлектрическим контрастом

Штриховые кривые 1 и 2 на рис. 4 изображают дисперсию световых волн в окрестности точки X зоны Бриллюэна в нерезонансном фотонном кристалле, т. е. в отсутствие экситонных резонансов. В самой точке Х этим волнам отвечает симметрия X₅ и X_{5'}. Сплошными кривыми 1', 2' и 3' показаны дисперсионные ветви, рассчитанные при учете экситон-фотонного взаимодействия с одним экситонным уровнем 1s, резонансная частота которого выбрана так, чтобы лежать посередине между частотами "голых" фотонов Х₅ и Х₅. Дополнительная ветвь 4' представляет продольные экситонные состояния, которые практически не обладают дисперсией и в дальнейшем не обсуждаются. Наконец, штрихпунктирные кривые 1", 2" иллюстрируют дисперсию экситонных поляритонов с учетом всех экситонных уровней. Для расчета выбран фотонный кристалл с не очень большим контрастом ($\varepsilon_B = 12, \, \varepsilon_a = 13$), таким чтобы ширина нижней запрещенной зоны в направлении к || [001], или расщепление между состояниями X_5 и $X_{5'}$, была сопоставима с матричным элементом экситон-фотонного взаимодействия. Из рис. 4 следует, что учет экситонных состояний 1*s*, оптически активных в поляризации $\mathbf{E} \perp z$, порождает вместо двух ветвей (1, 2) три ветви (1', 2' и 3'). Добавление вкладов остальных, возбужденных, экситонных уровней приводит в области частот $\omega < \omega_0$ к преобразованию ветви 1' в ветвь 1" и появлению еще одной ветви 2", а в области $\omega > \omega_0$ формируется густая сеть поляритонных ветвей, которая не показана, чтобы

Рис. 4. Фотонная зонная структура при наличии диэлектрического контраста: $\varepsilon_a = 12$, $\varepsilon_B = 13$. Штриховые кривые — расчет для фотонного кристалла без экситона; сплошные кривые — расчет при учете только одного нижнего экситонного уровня; штрихпунктирные кривые и горизонтальные штрихи на *X* оси — расчет с учетом всех размерно-квантованных состояний механического экситона. Обозначения кривых — см. текст.

не усложнять рисунок. Вместо этого горизонтальными отрезками, пересекающими вертикаль X, отмечены частоты экситонных поляритонов при $\omega > \omega_0$ только в точке X.

Далее предложено простое двухволновое описание поляритонного спектра, применимое при слабом диэлектрическом контрасте и позволяющее понять природу ветвей, отмеченных на рис. 4 цифрами с одним и двумя штрихами. Ранее это приближение использовалось при анализе дисперсии фотонов в нерезонансном фотонном кристалле [16].

Блоховское решение (4) представляет собой разложение по пространственным гармоникам с волновыми векторами $\mathbf{k} + \mathbf{b}$. Для волновых векторов $\mathbf{k} \parallel [001]$, лежащих вблизи точки X, оставляем в этом разложении два слагаемых с $\mathbf{k}_1 = (0, 0, k_1)$, $\mathbf{k}_2 = (0, 0, k_2)$ и $k_1 - k_2 = 4\pi/a$. В точке X имеем $k_1 = -k_2 = 2\pi/a$. Таким образом, электрическое поле записывается приближенно как

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_1 e^{ik_1 z} + \mathbf{E}_2 e^{ik_2 z}.$$
 (9)

Для двукратно вырожденных поляритонных состояний симметрии Δ_5 , совместимых с представлениями X_5 и $X_{5'}$, амплитуды \mathbf{E}_1 и \mathbf{E}_2 параллельны друг другу и перпендикулярны оси $z \parallel [001]$. Подставляя (8) и (9) в волновое уравнение (2), умножая его почленно на $\exp(-ik_j z)$ и интегрируя по элементарной ячейке ГЦК решетки, имеющей объем $v_0 = a^3/4$, получим

$$[(k_1/k_0)^2 - \bar{\varepsilon}]\mathbf{E}_1 = \varepsilon'\mathbf{E}_2 + \sum_{j=1,2} \mathbf{E}_j \sum_{\nu} I_{\nu}^{(1)*} I_{\nu}^{(j)} T_{\nu},$$
$$[(k_2/k_0)^2 - \bar{\varepsilon}]\mathbf{E}_2 = \varepsilon'\mathbf{E}_1 + \sum_{j=1,2} \mathbf{E}_j \sum_{\nu} I_{\nu}^{(2)*} I_{\nu}^{(j)} T_{\nu}.$$
 (10)

Здесь введены обозначения: $k_0 = \omega/c$,

$$\bar{\varepsilon} = \frac{1}{v_0} \int_{v_0} \varepsilon(\mathbf{r}) d^3 r, \quad \varepsilon' = \frac{1}{v_0} \int_{v_0} e^{4\pi i z/a} \varepsilon(\mathbf{r}) d^3 r,$$
$$I_{\nu}^{(j)} = \frac{1}{\sqrt{v_0}} \int_{v_0} e^{ik_j z} \Phi_{\nu}^*(\mathbf{r}) d^3 r, \quad T_{\nu} = \frac{\varepsilon_a \omega_{LT}}{\omega_{\nu} - \omega}$$
(11)

и предполагается, что начало отсчета декартовой системы координат выбрано в центре одного из шаров *A*.

В пренебрежении экситон-фотонным взаимодействием и диэлектрическим контрастом правые части уравнений (10) равны нулю, $\bar{\varepsilon} = \varepsilon_B$, и мы приходим к двум ветвям дисперсионной зависимости (6) для "голых" фотонов. В точке X эти ветви смыкаются. При наличии диэлектрического контраста, когда $\varepsilon' \neq 0$, происходит расщепление четырехкратно вырожденного состояния в точке X на двукратно вырожденные состояния $X_{5'}(E_1 = E_2)$ и $X_5(E_1 = -E_2)$ с частотами

$$\omega(X_5) = \frac{ck_X}{\sqrt{\bar{\varepsilon} - \varepsilon'}}, \qquad \omega(X_{5'}) = \frac{ck_X}{\sqrt{\bar{\varepsilon} + \varepsilon'}}$$
(12)

и расщеплением $\omega(X_5) - \omega(X_{5'}) \approx (\epsilon'/\bar{\epsilon})(ck_X/\bar{n})$, где $k_X = 2\pi/a$, $\bar{n} = \sqrt{\bar{\epsilon}}$. Приближенные формулы (12) с высокой точностью воспроизводят результат точного расчета, представленного на рис. 4 штриховыми кривыми.

В отсутствие диэлектрического контраста при учете только одного экситонного уровня 1*s* и в пренебрежении различием между вещественными интегралами $I_{1s}^{(1)}$ и $I_{s}^{(2)}$ система уравнений (10) приводится к виду

$$\left[(k_1/k_0)^2 - \varepsilon_B \right] \mathbf{E}_1 = \left[(k_2/k_0)^2 - \varepsilon_B \right] \mathbf{E}_2$$
$$= T_{1s} I_{1s}^2 (\mathbf{E}_1 + \mathbf{E}_2), \tag{13}$$

где I_{1s} — интеграл в (11), рассчитанный при волновом векторе k_X . При условии близости частот ω_1 и $\omega_X \equiv ck_X/n_B$ приходим к трем двукратно вырожденным состояниям: одному симметрии X_5 с частотой ω_X и двум симметрии $X_{5'}$ с частотами

$$\omega = \frac{\omega_1 + \omega_X}{2} \pm \sqrt{\left(\frac{\omega_1 - \omega_X}{2}\right)^2 + \delta^2}, \qquad (14)$$

где $\delta = \sqrt{\omega_1 \omega_{LT} I_{1s}^2}$. При точном совпадении частот ω_1 и ω_X в спектре поляритонов в направлении **k** || [001] формируется запрещенная зона с центром в точке ω_1 и шириной 2 δ . По мере расстройки ω_X относительно ω_1 края запрещенной зоны сдвигаются согласно (13), а в центре формируется разрешенная зона аналогично тому, как это происходит в резонансной брэгговской структуре с квантовыми ямами ([17] и ссылки там).

Для приближенного описания сплошных кривых на рис. 4 нужно оставить в суммах по v в (10) вклад основного состояния размерно-квантованного экситона. В этом приближении смешивание фотонных и экситонных состояний симметрии $X_{5'}$ приводит к их взаимному отталкиванию и образованию гибридных поляритонных волн с частотами

$$\omega = \frac{\omega_1 + \omega(X_{5'})}{2} \pm \sqrt{\left[\frac{\omega_1 - \omega(X_{5'})}{2}\right]^2 + \delta^2}.$$
 (15)

Формула (14) является частным случаем этой более общей формулы. Поскольку 1*s*-экситон не взаимодействует со световой волной симметрии X_5 , в рассматриваемом приближении частота состояния X_5 не меняется. Этим объясняется близость частот поляритона X_5 , рассчитанного без учета экситона и с учетом только уровня 1*s* (точки пересечения кривых 2 и 2' с вертикалью X на рис. 4). Учет возбужденных экситонных состояний в (10) смещает частоту нижнего поляритонного состояния $X_{5'}$ вниз (кривая 1"), однако их влияние мало по сравнению с экситоном 1s. В то же время в формировании поляритона X_5 (кривая 2") главную роль играет смешивание фотона X_5 с экситоном 1p и m = 0. Расчет показывает, что ветвь 2" удовлетворительно описывается двухволновой моделью (10), в которой учтено только одно экситонное состояние (1p, m = 0).

6. Заключение

Построена теория зонной структуры резонансных трехмерных фотонных кристаллов, образованных из двух материалов A (шарики) и B (диэлектрическая матрица), при произвольной величине эффективной массы экситона и произвольном диэлектрическом контрасте, т. е. различии между диэлектрической проницаемостью матрицы ε_B и фоновой диэлектрической проницаемостью ε_a материала A.

Нижняя поляритонная ветвь при конечной эффективной массе экситона M лежит между ветвями, рассчитанными в двух предельных случаях: при отсутствии пространственной дисперсии, т.е. при $M \to \infty$, и учете только одного экситонного уровня, т.е. при $M \to 0$, но так, чтобы резонансная частота основного состояния экситона ω_1 оставалась постоянной. Для описания поляритонных ветвей в спектральной области $\omega < \omega_1$ достаточно учесть взаимодействие света с несколькими нижними состояниями механического экситона.

Для резонансного фотонного кристалла с диэлектрическим контрастом проанализировано, как меняется запрещенная зона ГЦК решетки в направлении [001] при выборе резонансной частоты экситона ω_1 посередине запрещенной зоны аналогичного фотонного кристалла, но без учета экситона. При малом диэлектрическом контрасте, таком что $|\varepsilon_B - \varepsilon_a| \ll \varepsilon_B$, применимо двухволновое приближение, которое позволяет с удовлетворительной точностью аналитически описать результаты численного расчета. Основной вклад в положение нижней границы запрещенной зоны на прямой $\Gamma - X$ зоны Бриллюэна вносят экситонные состояния 1*s*, взаимодействующие со световой волной симметрии $X_{5'}$. Положение верхней границы главным образом определяется смешиванием экситона (1*p*, *m* = 0) с фотоном симметрии X_5 .

Заметим, что развитая теория применима при $M \to \infty$ для рассмотрения фотонных кристаллов с красителем, периодически распределенным в пространстве и характеризуемым резонансной частотой оптических переходов ([18] и ссылки там). Теория может быть также обобщена для расчета дисперсии экситонных поляритонов в резонансных двумерных фотонных кристаллах, например, в периодической системе цилиндров *A*, помещенных в матрицу *B*.

Авторы благодарны В.А. Кособукину за полезное обсуждение работы.

Список литературы

- [1] E. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987).
- [2] S. John. Phys. Rev. Lett. 58, 2486 (1987).
- [3] K.M. Ho, C.T. Chan, C.M. Soukoulis. Phys. Rev. Lett. **65**, 3152 (1990).
- [4] R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand. Phys. Rev. B 48, 8434 (1993).
- [5] R.M. Hornreich, S. Shtrikman, C. Sommers. Phys. Rev. B 49, 10914 (1994).
- [6] J.E. Sipe. Phys. Rev. E 62, 5672 (2000).
- [7] K. Busch. C.R. Physique 3, 53 (2002).
- $[8]\;\; O.$ Toader, S. John. Phys. Rev. E 70, 46605 (2004).
- [9] K.C. Huang, E. Lidorikis, X. Jiang, J.D. Joannopoulos, K.A. Nelson, P. Bienstman, S. Fan. Phys. Rev. B 69, 195111 (2004).
- [10] E.L. Ivchenko, Y. Fu, M. Willander. ФТТ 42, 1707 (2000).
- [11] A. Moroz. Phys. Rev. B 51, 2068 (1995).
- [12] A. Moroz. Phys. Rev. B 66, 115109 (2002).
- [13] X. Wang, X.-G. Zhang, Q. Yu, B.N. Harmon. Phys. Rev. B 47, 4161 (1993).
- [14] H. Ajiki, T. Tsuji, K. Kawano, K. Cho. Phys. Rev. B 66, 245 322 (2002).
- [15] З. Флюгге. Задачи по квантовой механике. Том. 1. Мир, М. (1974). 341 с.
- [16] S. Satpathy, Ze Zhang, M.R. Salehpour. Phys. Rev. Lett. 64, 1239 (1990).
- [17] E.L. Ivchenko, M.M. Voronov, M.V. Erementchouk, L.I. Deych, A.A. Lisyansky. Phys. Rev. B 70, 195106 (2004).
- [18] N. Eradat, A.Y. Sivachenko, M.E. Raikh, Z.V. Vardeny, A.A. Zakhidov, R.H. Baughman. Appl. Phys. Lett. 80, 3491 (2002).