06;12

Гетеропереходы p-GaSe-n-Ga₂S₃

© М.З. Ковалюк, В.И. Витковская, М.В. Товарницкий

Отделение института проблем материаловедения НАН Украины, Черновцы

Поступило в Редакцию 2 декабря 1996 г.

В работе на монокристаллах p-GaSe, отожженных в парах серы, получены эпитаксиальные слои n-Ga₂S₃. Показана возможность создания гетеропереходов p-GaSe-n-Ga₂S₃.

На основе слоистых монокристаллов типа A^3B^6 (GaSe, InSe, GaTe) созданы фоточувствительные структуры [1–3]. В данном сообщении развивается новый метод [4] создания таких структур на основе монокристаллов GaSe. Для этой цели выращивались монокристаллы GaSe методом Бриджмена. Они обладали хорошей слоистостью и зеркальной поверхностью, не требующей дополнительной обработки. Концентрация основных носителей составляла $p \cong 10^{15} \text{ см}^{-3}$, а подвижность $\mu_p \cong 40 \text{ см}^2/\text{B} \cdot \text{с}$ при комнатной температуре. Образцы GaSe определенных размеров помещались в кварцевую ампулу с серой и откачивались до остаточного давления $10^{-6} \text{ мм рт. ст. Отжиг образцов в парах серы проходил в интервале <math>400-500^{\circ}\text{C}$ в течение 10 ч. После такой процедуры базовые области GaSe приобретали темно-желтую окраску.

На таких объектах проводились рентгенографические исследования в Cr–K_{α} излучениях на установке ИРИС-0, которые показали, что на поверхности кристаллов GaSe образуется монокристаллическая пленка Ga₂S₃ с параметрами решетки $a = 6.22 \pm 0.03$ A, $c = 17.74 \pm 0.05$ A.

Рентгенограммы монокристаллов GaSe, отожженных в парах серы, отличаются в зависимости от режима обработки. С повышением температуры отжига от 400 до 500° С на рентгенограммах появляются, кроме основных отражений фазы GaSe, дополнительные отражения в виде дебаевских колец. На рис. 1 показана рентгенограмма образца GaSe $\langle S \rangle$, отожженного при 500° в течение 10 ч. Четкие интенсивные дебаевские кольца фазы Ga₂S₃ наблюдаются вместе с монокристаллическими отражениями основной фазы GaSe. Кристаллическая решетка Ga₂S₃ ориентирована относительно подложки {001} Ga₂S₃ || {001}GaSe.

22

Рис. 1. Рентгенограмма колебания образца GaSe $\langle S \rangle$; температура отжига 500°С, время отжига 100 ч.

Рис. 2. Спектральная характеристика квантовой эффективности гетероструктуры *n*-Ga₂S₃-*p*-GaSe (1 — 295 K; 2 — 80 K).

В процессе отжига монокристаллов селенида галлия в парах серы происходит гетеровалентное замещение селена серой.

Установлено, что толщину пленки Ga₂S₃ можно варьировать в достаточно широких пределах, а скорость формирования пленки составляет 0.35 мкм/ч. Полученные слои Ga₂S₃ всегда имели *n*-тип проводимости, концентрация основных носителей $n = 5 \cdot 10^{16}$ см⁻³, а их подвижность $\mu_n = 25$ см²/В·с при комнатной температуре.

Письма в ЖТФ, 1997, том 23, № 10

Полученная пленка Ga₂S₃ на подложке монокристаллического полупроводника GaSe приводит к созданию гетероструктуры *p*-GaSe–*n*-Ga₂S₃. Ширина запрещенной зоны Ga₂S₃, согласно [5], составляет $E_g = 2.7$ эВ, что позволяет использовать Ga₂S₃ в качестве "окна" гетероструктуры *p*-GaSe–*n*-Ga₂S₃.

Исследование вольт-амперных характеристик показало, что прямые токи превышают обратные в 10² раз.

На рис. 2 приведена спектральная характеристика исследуемой структуры. Порог фотоответа со стороны низких энергий обусловлен краем поглощения GaSe, а коротковолновой соответствует ширине запрещенной зоны Ga₂Se₃.

Список литературы

- Giulio M.R., Micocci G., Rizzo A., Tepore A. // J. Appl. Phys. 1983. V. 54. N 10. P. 5839–5843.
- [2] Бакуменко В.Л., Чишко В.Ф. // ФТП. 1977. Т. 11. В. 10. С. 2000-2002.
- [3] Катеринчук В.Н., Ковалюк М.З. // Письма в ЖТФ. 1992. Т. 18. В. 12. С. 70– 72.
- [4] Товарницкий М.В., Лукьянюк В.К., Ковалюк З.Д., Витковская В.И., Голуб С.Я. // Письма в ЖТФ. 1988. Т. 14. В. 22. С. 2104–2107.
- [5] Гавриленко В.И., Грехов А.М., Корбутяк Д.В., Литовченко В.Г. Оптические свойства полупроводников. Киев. Наук. думка, 1987. 608 с.

Письма в ЖТФ, 1997, том 23, № 10