06.2;12

Влияние локального давления на вольт-амперную характеристику структур типа Au–Si⟨Ni⟩–Sb

© О.О. Маматкаримов

Ташкентский государственный университет им. Улугбека

Поступило в Редакцию 12 декабря 1996 г.

В данной работе впервые приводятся результаты исследования влияния локального давления на вольт-амперную характеристику структур типа Au–Si $\langle Ni \rangle$ –Sb. Показано, что примеси никеля в кремнии увеличивают общую тензочувствительность структур, изготовленную на основе *n*-Si $\langle Ni \rangle$.

В работе [1,2] показано, что полупроводники, компенсированные примесями с глубокими уровнями, отличаются от других материалов с большим коэффициентом тензочувствительности, их тензочувствительность увеличивается с увеличением степени компенсации.

В связи с этим настоящая работа посвящена изучению тензосвойств структур с барьером Шоттки, изготовленных на основе исходного кремния и кремния, компенсированного никелем.

Образцы *n*-Si(Ni) были получены путем высокотемпературной ($T = 1050 - 1100^{\circ}$ C) диффузии из напыленного на поверхность слоя металлического никеля. Образцы имели вид прямоугольного параллелепипеда с размерами $3 \times 3 \times 0.3$ мм и с кристаллографической ориентацией [III] вдоль малого ребра. После диффузии образцы *n*-Si(Ni) с исходным сопротивлением $\rho = 80$ Ом·см сохраняли тип проводимости, а их удельное сопротивление при температуре диффузии $T_{\rm d} = 1100^{\circ}$ C стало $\rho = 5 \cdot 10^2$ Ом·см и при $T_{\rm d} = 1130^{\circ}$ C, $\rho = 3 \cdot 10^3$ Ом·см.

Структуры с барьером Шоттки изготовлены напылением золота и сурьмы на противоположные грани образцов с большой поверхностью.

Для изучения тензосвойств структур нами разработана специальная установка. Общий вид установки показан на рис. 1. Металлическая иголка 9 с радиусом округления R = 40 мкм передвигается вниз с помощью пружины 13. При передвижении иглы на расстояние Δx пружина 12 также сжимается на расстояние Δx , и на образец действует

62

Рис. 1. Установка для создания локального давления.

сила $F = k\Delta x$ или давление $P = \Pi F^{1/3}$, где $\Pi = \frac{1}{\pi (RD)^{2/3}}$ и $D = \frac{3}{y} \left(\frac{1-\sigma^2}{y} - \frac{1-\sigma_1^2}{y'} \right), \sigma, \sigma_1$ — коэффициенты Пуассона, у и у' — модули Юнга соответственно полупроводника и материала иглы, подложка II с направляющим цилиндром обеспечивает перпендикулярное положение образца с иглой. С помощью выводов А и В снимается вольт-амперная характеристика структур с барьером Шоттки.

На рисунке 2 приведена ВАХ структур с барьером Шоттки на основе исходного кремния и кремния, компенсированного никелем. Как видно из рисунка, прямой ток структур на основе n-Si \langle Ni \rangle больше изменяется,

Письма в ЖТФ, 1997, том 23, № 9

Рис. 2. Вольт-амперные характеристики структур с барьером Шоттки при T = 300 К. Кривые l'-4' соответствуют прямым ветвям ВАХ структур Au- $\langle n$ -Si \rangle -Sb и l-4 ВАХ структур Au-n-Si \langle Ni \rangle -Sb. l, l' - P = 0; 2, $2' - P = 0.6 \cdot 10^8$ Па; 3, $3' - P = 1 \cdot 10^8$ Па; 4, $4' - P = 1.6 \cdot 10^8$ Па.

чем прямой ток структур на основе исходного кремния под влиянием локального давления.

По экспериментальным результатам можно прийти к выводу, что примеси никеля в кремнии увеличивают общую тензочувствительность структур, изготовленных на основе *n*-Si(Ni).

Список литературы

- [1] Абдураимов А., Зайнабидинов С.З., Маматкаримов О.О., Турсунов И.Г. // Узбекский физический журнал. 1992. В. 4. С. 68–72.
- [2] Абдураимов А., Зайнабидинов С.З., Маматкаримов О.О., Химматкулов О. // ФПП. 1993. Т. 27. В. 3. С. 1216–1219.

Письма в ЖТФ, 1997, том 23, № 9