05;06 Управление морфологией пористого кремния *n*-типа

© Э.Ю. Бучин, А.В. Проказников

Институт микроэлектроники РАН, Ярославль

Поступило в Редакцию 26 апреля 1996 г.

В работе морфология получаемых при анодном травлении слоев связана с вольт-амперными характеристиками электролитной ячейки во время травления. Проводя травление в разных точках вольт-амперной характеристики, можно получить пористый кремний с разной структурой.

Пористый кремний привлекает в последние годы внимание исследователей многих научных коллективов благодаря широкому спектру его физико-химических свойств, а также многообразным свойствам структур, реализуемых на основе единой кремниевой технологии. Большинство его физико-химических характеристик тесно связаны с особенностями морфологии его пористой структуры. Морфологический аспект комплекса проблем к настоящему времени не достаточно хорошо изучен [1]. В частности, несмотря на наличие работ, изучающих проблемы получения пористого кремния и управления его свойствами, к настоящему времени отсутствует единая общая теория порообразования в кремнии и других полупроводниках [1].

Поиск возможных путей управления морфологией низколегированного пористого кремния *n*-типа проводился, в частности, в работах [2–5]. В [2] были обнаружены макропоры с формой пор в виде вертикальных каналов, перпендикулярных к поверхности. В [4] показано, что при увеличении таких параметров, как интенсивность освещения, время анодирования, и уменьшении плотности тока нарастает аморфизация поверхности в ходе анодирования в концентрированной плавиковой кислоте (HF), а также происходит ветвление пор в нижней части, вплоть до образования микроструктуры [5]. В [3] отмечалось, что при изменении длины волны подсветки при анодировании в разбавленных растворах HF может меняться внешний профиль макроканалов от цилиндрического до конического.

80

В работах [6–8] при анодировании кремния *n*-типа в смеси HF с изопропиловым спиртом (1:1 по объему) выделено четыре основных типа морфологии пор, которые образуются при определенных сочетаниях параметров процесса анодирования, обнаружена корреляция между типом морфологии и особенностями спектров фотолюминесценции, продемонстрирована возможность контролируемого получения пористого кремния, состоящего из чередующихся структур с различным типом морфологии.

В настоящей работе изучаются вольт-амперные характеристики (ВАХ), снятые при различных условиях анодирования, соответствующих формированию четырех основных типов морфологии пор, а также приводится теоретическое объяснение хода характеристик и образования основных типов морфологии.

Постановка экспериментов и снятие ВАХ системы кремниевый анод (кремний типа КЭФ-20) — электролит (смесь НF со спиртом) проводились по стандартным методикам, описанным в [4–7], скорость линейной развертки стабилизированного подъема напряжения составляла 10 В/с.

Общий вид ВАХ при анодировании кремния для указанных выше значений параметров приведен на рис. 1 и 2; он аналогичен указанному в работах [4,9,10]. Условно на ВАХ могут быть выделены четыре участка. Первый участок — начальная область резкого подъема, второй участок — верхняя область резкого подъема, третий участок — область насыщения тока, "полочка", четвертый участок — вторая область подъема. Внешний вид ВАХ определяется значениями следующих параметров: легированием образца, составом и концентрацией электролита, режимами освещения, температурой, что и было предметом изучения данной работы. Как показали исследования, если использовать приведенную в [6-8] классификацию, нулевой тип морфологии пористой структуры образуется при выборе рабочих точек на первом участке ВАХ, первый тип морфологии образуется при выборе рабочих точек на втором участке ВАХ и т. д. Следовательно, образование структур с заданной морфологией возможно проводить следующим образом. Путем снятия ВАХ можно выбрать рабочие точки по току и напряжению в указанных выше четырех областях ВАХ и сформировать любую из четырех основных морфологических структур либо любую их комбинацию, перемещаясь по ВАХ в ходе анодирования.

Как видно из рис. 2, ВАХ сильно зависит от концентрации и состава электролита. Отметим, что эксперименты, выполненные в [4],

6 Письма в ЖТФ, 1997, том 23, № 6

Рис. 1. Вольт-амперные характеристики, снятые в процессе анодирования в растворе, состоящем из HF и изопропилового спирта в соотношении 1:1 по объему для различных значений параметров анодирования — мощности светового потока (*J*), температуры электролита (t° , C), времени анодирования (τ): $I - J = 0.06 \text{ Br/cm}^2$, $t = 30^{\circ}$ C, $\tau = 1 \text{ мин}$; $2 - J = 0.12 \text{ Br/cm}^2$, $t = 30^{\circ}$ C, $\tau = 1 \text{ мин}$; $4 - J = 0.18 \text{ Tr/cm}^2$, $t = 60^{\circ}$ C, $\tau = 1 \text{ мин}$; $4 - J = 0.18 \text{ Tr/cm}^2$, $t = 60^{\circ}$ C, $\tau = 3 \text{ мин}$. Стабилизированный анодный ток при анодировании до снятия ВАХ составлял $j = 25 \text{ мА/см}^2$. Римскими цифрами для кривой *1* указаны участки ВАХ, на которых формируются пористые структуры с различной морфологией пор.

производились на концентрированной HF, тогда как в [11] — на сильно разбавленной HF. Как видно из рис. 2, спиртовые добавки приводят к такой форме BAX, при которой участки BAX, отвечающие за образование ПК с различной морфологией, становятся хорошо разрешимыми при определенной интенсивности света, а следовательно, процесс управления формированием пористого кремния различной морфологии становится наиболее оптимальным.

Внешний вид ВАХ в целом хорошо объясняется с помощью теории кинетики при генерации неосновных носителй в области пространствен-

Письма в ЖТФ, 1997, том 23, № 6

Рис. 2. Вольт-амперные характеристики, снятые в процессе анодирования через 1 мин после начала процесса при стабилизированном анодном токе $j = 25 \text{ мA/см}^2$, для различных составов электролита: I — концентрированная РА (48% мас. конц.); 2 — смесь НF и воды (1:1 по концентрированная HF (48% мас. конц.); 2 — смесь HF и воды (1:1 по объему); 3 — смесь РА и изопропилового спирта (1:1 по объему).

ного заряда [9,10] в применении к процессам порообразования. Распределение общего падения потенциала зависит от уровня легирования полупроводника, концентрации и состава электролита и приложенной к системе разности потенциалов [9]. Начальный участок роста ВАХ описывается законом Тафеля. Участок выхода на насыщение описывается зависимостью $j \sim \varphi^{1/2}$ (где j — плотность тока, φ — приложенная разность потенциалов). Второй участок роста ВАХ объясняется явлениями пробоя [9].

Морфология пористой структуры определяется рассеянием носителей заряда в полупроводнике на рассеивающих центрах (примесях, фононах, дислокациях и т. д.). Вероятность рассеяния носителей на рассеивающих центрах изменяется с изменением энергии носителей. Например, при рассеянии на заряженных примесях сечение рассеяния уменьшается с увеличением энергии носителей, что соответствует более вытянутой форме пор при увеличении напряжения. Таким образом, когда

6* Письма в ЖТФ, 1997, том 23, № 6

анодирование проводится при рабочей точке, выбранной на участке второго подъема, образуется менее разветвленная пористая структура с "ливневой" морфологией.

В настоящей работе проведена детальная систематизация данных, позволяющих связать различную морфологию пористых структур с параметрами системы электролит (HF) — полупроводник (кремний *n*типа) в ходе анодирования, что делает возможным целенаправленное управление морфологией пористой структуры. Показано, что морфология пористой структуры определяется положением рабочей точки на вольт-амперной характеристике (ВАХ) системы электролит (HF) полупроводник (кремний *n*-типа). Вид ВАХ определяется параметрами системы: уровнем легирования образца, температурой, составом и концентрацией электролита, освещенностью образца. Общий ход ВАХ описывается теорией кинетики при генерации неосновных носителей в области пространственного заряда. Делается вывод, что морфология пористой структуры определяется рассеянием носителей заряда на рассеивающих центрах, что делает возможным построить количественные модели, отражающие закономерности образования различных типов морфологии пористой структуры.

Список литературы

- [1] Smith R.L., Collins S.D. // J. Appl. Phys. 1992. V. 71. N 8. P. R1-R22.
- [2] Bomchil G., Herino R. // L'Echo Recherches. 1988. V. 131. P. 25-36.
- [3] Lehmann V., Foll H. // J. Electrochem. Soc. 1990. V. 137. P. 653-661.
- [4] Arita Y., Sunohara Y. // J. Electrochem. Soc. 1977. V. 124. N 2. P. 285-295.
- [5] Изидинов С.О., Блохина А.П., Исмайлова Л.А. // Физика и химия обработки материалов. 1987. Т. 2. С. 92–96.
- [6] Бучин Э.Ю., Постников А.В., Проказников А.В., Световой В.Б., Чурилов А.Б. // Письма в ЖТФ. 1995. Т. 21. В. 1. С. 60–65.
- [7] Buchin E.Yu., Churilov A.B., Postnikov A.V., Prokaznikov A.V., Svetovoy V.B. // Phys. Low-Dim. Struct. 1995. V. 2/3. P. 97–104.
- [8] Buchin E.Yu., Churilov A.B., Prokaznikov A.V. //Appl. Surf. Sci. 1996. V. 102. P. 431–435.
- [9] *Мямлин В.А., Плесков Ю.В.* Электрохимия полупроводников. М.: Наука, 1965. 337 с.
- [10] Гуревич Ю.Я., Плесков Ю.В. Фотоэлектрохимия полупроводников. М.: Наука, 1983. 312 с.
- [11] Lehmann V. // J. Electrochem. Soc. 1993. V. 140. N 10. P. 2836-2843.

Письма в ЖТФ, 1997, том 23, № 6