05.1;05.3

Выделение подвижной меди из образцов Cu_{2-x}Se под действием ударных нагрузок

© М.А. Коржуев

Институт металлургии им. А.А. Байкова РАН, Москва

Поступило в Редакцию 20 ноября 1996 г.

В работе найдено, что эффективность выделения меди из образцов суперионного проводника селенида меди Cu_{2-x}Se под действием ударных нагрузок существенно увеличивается по сравнению со случаем воздействия статического давления. Эффект связывается с действием избыточных давлений и температур на границах кристаллических зерен в процессе пластической деформации образцов при ударе.

Суперионные проводники (твердые электролиты) отличаются высокой подвижностью ионов, соответственно многие эффекты, наблюдаемые в них, представляются необычными для твердых тел [1,2]. Ранее в суперионном проводнике селениде меди $Cu_{2-x}Se$, обладающем смешанной электронной (*p*-типа)и ионной (по меди) проводимостью, наблюдали эффект выделения подвижной меди из твердого раствора $(Cu_{2-x}Se \rightarrow Cu_{2-x-\Delta x}Se + Cu, \Delta x > 0)$ при прессовании [3] или пластической деформации образцов [4].

В настоящей работе обнаружено, что под действием ударных нагрузок интенсивность выделения меди из твердого раствора на основе Cu_{2-x} Se может существенно возрасти за счет действия избыточных давлений и температур на границах кристаллических зерен в процессе пластической деформации образцов при ударе [5].

Поликристаллические образцы Cu_{2-x}Se (x = 0.005 и 0.01, соответствующие положению границ области гомогенности соединения при температурах испытаний) получали методом ампульного синтеза [6]. Ударные нагрузки ($P = 5 \cdot 10^7 \,\text{Пa}$) на образцы ($h = 8 \,\text{мm}$) налагали в стальных пресс-формах диаметром 5 мм (рис. 1) при тепературе $T = 300 \,\text{K}$ ($T < T_C$) b 450 K ($T > T_C$) (здесь $T_C = 413 \,\text{K}$ — температура суперионного фазового перехода). После каждого удара методом измерения термо-э.д.с. $\alpha^{300\text{K}}$ определяли состав образцов x' и $\Delta x = x' - x$ (точность ± 0.0015) [7]. Использовали пуансоны с концами различной

65

Рис. 1. Цилиндрическая пресс-форма, использованная для наложения на образцы Cu_{2-x} Se статических либо ударных нагрузок. Светлые пятна на поверхности формы — медь, выделившаяся из образцов при длительных статических испытаниях.

формы — плоскими и конусообразными (угол при вершине 90°) [8]. В первом случае при ударе образец испытывал импульсное одноосное сжатие, во втором — дополнительно пластическую деформацию при перепрессовке.

Зависимости состава матрицы сплавов Cu_{2-x}Se от числа ударов N, сопровождавшихся (1, 2) и не сопровождавшихся (3, 4) перепрессовкой образцов, представлены на рис. 2. Из рис. 2 видно, что в первом случае состав матрицы сплавов Cu_{2-x}Se практически не менялся $(\Delta x \sim 0)$ (кривые 3 и 4), что объясняется недостаточной длительностью импульсного воздействия на образцы при ударе $N \cdot t$ (N — число ударов, t — эффективное время удара). Действительно, для наблюдения выхода подвижной меди из компактных обрацзов Cu_{2-x}Se на поверхность под действием давления требуется время $t^* \sim 10\tau$, где $\tau = d^2/(\pi^2 D)$ — характерное время диффузии подвижности меди в образце, $d \sim 1$ см — размер образца, D — коэффициент диффузии подвижной меди [3]. Поскольку для Cu_{2-x}Se – $D^{300K(450K)} \sim 10^{-6(-3)}$ см²/с, имеем $t^*_{300 K(450 K)} \sim 10$ сут (20 мин) [3], тогда как суммарное время воздействия ударных нагрузок на образцы в настоящей работе ($N_{\text{max}} \sim 200$), согласно оценке, не превышало t = 0.2-1 с.

В случае перепрессовки образцов при ударах состав матрицы сплавов $Cu_{2-x}Se$ существенно изменялся ($x \rightarrow 0.2$) (кривые 1 и 2, рис. 2). Обнаруженный эффект можно связать с действием избыточных

Письма в ЖТФ, 1997, том 23, № 5

Рис. 2. Зависимость состава Cu_{2-x}Se от числа ударных нагрузок, сопровождавшихся (1, 2) и не сопровождавшихся (3, 4) перепрессовкой образцов. Исходный состав образцов *x*: 1, 4 — 0.005; 2, 3 — 0.01; температура испытаний *T*, *K*: 1, 4 — 300 K; 2, 3 — 450 K; 5 — схема образования точек моментального касания Герца.

давлений и температур в точках моментального касания Герца ($p^* \gg \bar{p}$, $T^* \gg \bar{T}$, здесь \bar{P} и \bar{T} — средние значения давления и температуры), возникающих в процессе проскальзывания кристаллических зерен при перепрессовке (5, рис. 2) [9–11].

В процессе перепрессовки нарушается условие компактности образцов (диффузионная длина *d* уменьшается в пределе до размеров кристаллического зерна), что существенно снижает характерное время τ выделения меди. Действительно, медь, выделявшаяся из образцов под действием ударных нагрузок, обнаруживалась в виде микровыделений $d \sim 1-3$ мк в межзеренных пустотах, а не на поверхности образцов и пресс-формы, как при длительных статических нагрузках (рис. 1) [3]. Размер кристаллических зерен в исследованных образцах составлял $d \sim 100$ мк, что дает оценку времени выделения меди из зерна $t_{300(450)\,\rm K}^* \sim 100(0.01)$ с.

Соответственно механизм выделения меди из Cu_{2-x}Se при ударе представляется следующим. В процессе перепрессовки образцов при

5* Письма в ЖТФ, 1997, том 23, № 5

ударе в точках моментального касания Герца (5, рис. 2) повышаются давление и температура, при этом подвижная медь диффундирует преимущественно к границам кристаллических зерен, где выделяется в виде отдельной фазы ($\Delta x > 0$). Затем за несколько минут ($t \gg t^*$) распределение меди по зерну выравнивается, и при последующем ударе описанный цикл повторяется. С ростом числа ударов N состав образцов x' сдвигается в глубь области гомогенности соединения [6], соответственно диффузионные потоки подвижной меди из областей Герца (5, рис. 2) перераспределяются от поверхности в глубь кристаллического зерна.

Кривые 1, 2 (рис. 2) позволяют оценить величины избыточных давлений P^* и температур T^* , действующих в образцах Cu_{2-x} Se в точках моментального касания Герца. Используя значения $\Delta x/\Delta P \sim 0.01/$ ГПа [3] и диаграмму состояния системы Cu–Se вблизи соединения Cu_{2-x} Se [6] из кривых 1 и 2 (рис. 2), для образцов с x = 0.005 ($\delta x = 0.07$) и 0.01 ($\Delta x = 0.09$) получаем оценки значений $p^* \sim 1.5$ и 0.8 ГПа, $I^* \sim 1390$ и 1380 K, которые могли бы привести к наблюдаемому эффекту по отдельности. Полученные значения T^* , однако, представляются существенно завышенными, более того, особенности диаграммы состояния Cu_{2-x} Se [6] показывают, что температурный фактор, по-видимому, не является основным в исследуемом эффекте. Действительно, производная $\Delta x/\Delta T$ имеет необходимый для объяснения эффекта положительный знак только в интервале температур $T300 \rightarrow 413$ K ($\Delta x = +0.005$) и T > 1380 K, в области температур T = 413-1380 K — $\Delta x/\Delta T < 0$ [6].

Отсюда следует, что температурный фактор может быть существенным лишь для образца с x = 0.05, если температура в точках Герца при ударе возрастет до $T^* > 413$ К. Полагая, что мгновенный рост температуры в точках Герца на 100–200 К вполне возможен [5] и вычитая соответствующий температурный вклад в Δx , для образца с x = 0.005 окончательно получаем значение $p^* \sim 1$ ГПа, близкое к оценке $P^* \sim 0.8$ ГПа для образца с x = 0.01. Полученный результат можно объяснить тем, что при прочих равных условиях величина p^* определяется твердостью зерен H, последняя в Cu_{2-x} Se слабо зависит от состава и температуры [12]. Используя найденные значения p^* , получаем, что вклад фактора давления в наблюдавшийся эффект в Cu_{2-x} Se, видимо, является основным, причем эффективность воздействия давления при ударе возрастает в $p^*/p \sim 20$ раз.

Письма в ЖТФ, 1997, том 23, № 5

Таким образом, в настоящей рабте найдено, что эффективность выделения меди из суперионного проводника селенида меди Cu_{2-x} Se под действием ударных нагрузок может существенно увеличиться в случае, если удар сопровождается пластической деформацией образцов. Обнаруженный эффект следует учитывать при механической обработке образцов Cu_{2-x} Se, он может проявляться, очевидно, и в других суперионных проводниках.

Список литературы

- [1] *Физика* суперионных проводников / Под ред. М.Б. Саламона. Рига: Зинатне, 1982. 316 с.
- [2] Гуревич В.Н. Твердые электролиты. М.: Наука, 1992. 200 с.
- [3] Коржуев М.А., Абрикосов Н.Х., Кузнецова И.В. // Письма в ЖТФ. 1987.
 Т. 13. В. 1. С. 9–13.
- [4] Коржуев М.А. // ФХОМ. 1993. В. 5. С. 153–155.
- [5] Пуарье Ж.-П. Ползучесть кристаллов. М.: Мир, 1988. 288 с.
- [6] Коржуев М.А., Баранчиков В.В., Абрикосов Н.Х., Банкина В.Ф. // ФТТ. 1984. Т. 26. В. 7. С. 2209–2212.
- [7] Коржуев М.А. // Письма в ЖТФ. 1989. Т. 15. В. 21. С. 24-27.
- [8] Коржуев М.А., Банкина В.Ф., Абрикосов Н.Х. // Письма в ЖТФ. 1985.
 Т. 11. В. 11. С. 656–659.
- [9] Сирота Н.Н., Коржуев М.А., Лобзов М.А., Абрикосов Н.Х., Банкина В.Ф. // ДАН СССР. 1985. Т. 281. В. 1. С. 75–77.
- [10] Абрикосов Н.Х., Коржуев М.А., Банкина В.Ф., Кузнецова И.В. // ЖТФ. 1987. Т. 57. В. 7. С. 1406–1409.
- [11] Коржуев М.А., Сергеева Л.М. // Письма в ЖТФ. 1988. Т. 14. В. 4. С. 301– 303.
- [12] Коржуев М.А., Королькова И.Г., Абрикосов Н.Х. // Изв. АН СССР. Неорган. материалы. 1987. Т. 23. В. 12. С. 1962–1964.

Письма в ЖТФ, 1997, том 23, № 5