Физические проблемы конденсаторных материалов со структурой типа пирохлора

© В.А. Исупов

05

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 30 апреля 1996 г.)

Оксиды $A_2B_2O_7$ и $A_2B_2O_6$ со структурой типа пирохлора и с несегнетоэлектрическими фазовыми переходами могут быть использованы в качестве материалов для электрических конденсаторов. Они рассматриваются как несобственные антисегнетоэлектрики, что позволяет объяснить их свойства, в том числе диэлектрическое поведение. Из приближенного расчета следует разумный порядок величины параметров, входящих в формулы, что можно считать подтверждением правильности используемых представлений.

Оксиды со структурой типа пирохлора интересны для физики сегнетоэлектричества уже потому, что среди них находится пирониобат кадмия Cd₂Nb₂O₇ сегнетоэлектрик с совершенно необычными свойствами [1, гл. 15; 2–5]. Несмотря на то что у большинства пирохлоров фазовых переходов не наблюдается, а диэлектрическая проиницаемость ε' невысока (30–50) и слабо меняется с температурой, было обнаружено довольно много пирохлоров с фазовыми переходами. Многие были обнаружены среди соединений с общей формулой А₂В₂О₇ [6]. Диэлектрическая проницаемость этих пирохлоров в широком интервале температур имеет повышенное значение (более 100), слабо возрастающее при охлаждении ниже некоторой температуры Т_т (температуры пологого максимума ε'), но довольно быстро падает при *T* < *T_m* (пример дан на рис. 1). В работах [7-14] число таких пирохлоров было существенно увеличено, в частности, за счет соединений с формулой А2В2О6. Пирохлоры, у которых была обнаружена диэлектрическая аномалия, перечислены в таблице (за исключением пирониобата кадмия, занимающего среди пирохлоров особое место).

В работе [6] было показано, что падение ε' ниже T_m сопровождается аномалией теплового расширения, указывающей на связь диэлектрического поведения с фазовым переходом (ФП). Из-за отсутствия петель диэлектрического гистерезиса ниже T_m эти ФП были отнесены к числу антисегнетоэлектрических (АСЭ), правда, с некоторой долей сомнения. Интересно, что в работе [9] были обнаружены также СЭ пирохлоры (приведенные в таблице), которые, к сожалению, в дальнейшем не изучались.

Как стало недавно известно [15], керамика на основе упомянутых АСЭ пирохлоров благодаря своей довольно высокой ε' (от 100 до 300), малым диэлектрическим потерям выше T_m и низкой температуре спекания в течение уже 20 лет используется в Китае для производства электрических конденсаторов.

Очевидно, что разработка новых технических материалов может быть более успешной при лучшем понимании физических явлений, наблюдаемых в этих материалах. Обсуждение этих явлений и является целью данной работы. Оно проводится на примере Bi₂FeNbO₇.

При рассмотрении пирохлоров, перечисленных в таблице, обращает на себя внимание присутствие ионов Ві³⁺ и Рb²⁺ в положениях А кристаллической решетки. Как известно, в большинстве перовскитовых соединений именно ионы Pb и Bi обеспечивают СЭ и АСЭ свойства и наибольшую температуру Кюри. Повидимому, большая элктронная (а возможно, и ионная) поляризуемость этих ионов [1] обусловливает СЭ и АСЭ свойства также и у пирохлоров. Однако в поведении АСЭ перовскитов и пирохлоров имеется существенная разница. Диэлектрическая проницаемость АСЭ перовскитов выше температуры Кюри $T_c(=T_m)$ подчиняется закону Кюри-Вейсса и в максимуме при Т_с достигает больших величин (порядка 10^3), резко падая ниже T_c . Напротив, диэлектрическая проницаемость АСЭ пирохлоров выше T_m (где $T_m \neq T_c$) очень слабо возрастает при охлаждении и не достигает столь высоких значний при T_m, более или менее быстро спадая ниже Т_т. У всех этих пирохлоров в

Рис. 1. Температурная зависимость диэлектрической проницаемости ε' и диэлектрических потерь (tg δ) поликристаллического Bi₂FeNbO₇. I - 0.4, 2 - 1, 3 - 10 kHz. Черные точки — результат без учета релаксационной поляризации, светлые — с ее учетом.

Соединение	Период кубической решетки, Å	$T_m \mathrm{K}$	$arepsilon_m'$	$arepsilon_{20^\circ C}'$	Предполагаемое состояние	Ссылка
Bi ₂ ScNbO ₇	10.74	601	286	107	ACЭ?	[6]
Bi ₂ ScTaO ₇	10.705	231	107	105	//	[7]
Bi ₂ FeNbO ₇	10.523	183	130	127	//	[6]
Bi ₂ FeTaO ₇	10.56	192	128	115	11	[7]
Bi ₂ CrNbO ₇	—	113	100	80	АСЭ	[8]
Bi ₂ InNbO ₇	—	193	190	160	11	[8]
$Bi_2Mg_{2/3}Nb_{4/3}O_7$	10.602	162	126	120	ACЭ?	[6]
$Bi_2Ni_{2/3}Nb_{4/3}O_7$	—	175	153	150	11	[6]
PbBiZrNbO ₇	Тетрагональная	350	3100	1250	СЭ	[9]
PbBiTiNbO7	10.412	241	1720	600	СЭ?	[9]
PbDyTiNbO ₇	10.510	230	1450	450	11	[9]
PbSbSnNbO7	10.581	423	—	—	СЭ	[10]
PbSbTiNbO7	10.433	422	—	—	//	[10]
PbSbHfNbO7	10.579	419	—	—	//	[10]
PbLaTiNbO7	10.392	413	—	—	11	[10]
Pb_2GaNbO_6	10.54	30	140	130*	АСЭ	[11]
Pb ₂ BiNbO ₆	Моноклонная	38	160	160*	//	[11]
$Bi_2Zn_{4/3}Ta_{2/3}O_6$	Псевдомоноклонная	593	105	60	СЭ?	[12,13]
Pb ₂ Li _{1/2} Nb _{3/2} O ₆	Тригональная	353,	320	120	ACЭ?	[14]
		550	(353 K)			[14]
$Pb_2Gd_{1/2}Mn_{1/2}\ NbO_6$	—	36	200	150*	АСЭ	[14]
$Pb_2Cd_{1/2}Ti_{1/2}TaO_6$	—	20	135	120*	//	[11]

Оксиды со структурой типа пирохлора, у которых отмечены фазовые переходы

Примечание. * При 200 К.

области низкотемпературного спада ε' диэлектрическая поляризация имеет релаксационный характер.

По экспериментальной кривой $\varepsilon'(T)$ для Bi₂FeNbO₇ мы построили зависимость $1/\varepsilon'(T)$, экстраполировав которую в предположении ее линейности, получили параметры закона Кюри–Вейсса. Оказалось, что постоянная Кюри–Вейсса $C = 1.66 \cdot 10^5$ К и близка к C Cd₂Nb₂O₇ ($1.13 \cdot 10^5$ K) и PbZrO₃ ($1.55 \cdot 10^5$ K) [1]. Однако температура Кюри–Вейсса Θ (если о ней можно говорить в данном случае) оказалась равной -1100 К, т. е. $T_m - \Theta \cong 1300$ К (у АСЭ перовскитов $T_c - \Theta$ обычно имеет порядок нескольких десятков градусов).

Чтобы объяснить это различие, нужно указать, что существуют две формулировки антисегнетоэлектричества в ионных кристаллах [1, гл. 13]. Одна из них предполагает наличие в кристалле нескольких подрешеток, дипольные моменты которых компенсируют друг друга. Вторая требует, кроме того, энергетической близости АСЭ состояния к СЭ состоянию, а иначе говоря, смягчения моды по центру зоны Бриллюена по мере приближения к Т_с. Первая формулировка не требует выполнения закона Кюри–Вейсса и вообще аномалии ε' в точке ФП (хотя и не запрещает ее). По-видимому, АСЭ ФП, где есть максимум ε' при T_c , где важную роль играют силы диполь-дипольного взаимодействия и параметром порядка при ФП является так называемая антиполяризация, следует считать собственными, тогда как те АСЭ $\Phi\Pi$, при которых нет максимума ε' , нужно считать несобственными [1]. Отсюда можно сделать вывод, что ФП в большинстве пирохлоров, перечисленных в таблице, где практически наблюдается не максимум, а скачок $\varepsilon'(T)$, являются несобственными АСЭ ФП. Хотя большая поляризуемость ионов висмута и свинца обеспечивает слабое повышение ε' при охлаждении до T_m , ФП связан, по-видимому, с каким-то параметром порядка, не характерным для собственного АСЭ ФП. Существенно еще и то, что несобственные АСЭ ФП в пирохлорах являются также размытыми фазовыми переходами: четкого скачка $\varepsilon'(T)$ в точке ФП нет.

Хорошо известно, что при размытых СЭ ФП диэлектрическая поляризация имеет релаксационный характер, связанный с релаксацией полярных областей объемом порядка 10⁻¹⁸ см³, образующихся в параэлектрической матрице при охлаждении, и со специфической температурной зависимостью их числа [1, гл. 12]. При размы-

α									ь	
α'	ŧ	ŧ	-	+		+	+	+	6'	
	-	+	-	*	*	ł	*	ł		
	+	->	+	+	->	->	+	+	,	
	ł	-	+	ł	*	*	4-	ŧ		
	+	->	+	+	-	+	*	+		
c'	•	-	ł	ł	+	ł	ł	t	ď'	
c	-	-	+	-	+	ł	→	+	đ	

Рис. 2. Схема антисегнетоэлектрической области в параэлектрической матрице.

том АСЭ ФП полярные области — области СЭ фазы отсутствуют. Вместо них при охлаждении образуются АСЭ области. Для объяснения диэлектрической релаксации в пирохлорах предложен механизм [6], в котором предполагается термически активированный процесс поляризации поверхностных слоев АСЭ областей (рис. 2). Речь идет о слоях, подобных слоям abb'a' и cdd'c' на этом рисунке. Когда под действием "холодной" тепловой флуктуации в таком слое возникает АСЭ состояние и дипольный момент, слой "входит" в состав АСЭ области. Когда под действием "горячей" флуктуации этот слой переходит в параэлектрическое состояние и его момент исчезает, слой "выходит" из АСЭ области. Внешнее электрическое поле вызывает увеличение числа поверхностных соев с дипольным моментом по полю и уменьшение числа слоев с моментом против поля. Это и приводит к релаксационной диэлектрической поляризации в области ΦП.

Как мы уже говорили, при размытых СЭ фазовых переходах средняя температура Кюри соответствует температуре максимума низкочастотной ε' . В случае несобственных антисегнетоэлектриков, где ε' при ФП испытывает скачок, средняя температура размытого ФП $(T_{C(0)})$ соответствует не максимуму $\varepsilon'(T)$, а лежит гдето посередине низкотемпературного спада ε' . Как и для размытых СЭ ФП [1, гл. 12] положим, что распределение АСЭ областей по температуре локальных ФП $(T_{c(l)})$ выражается формулой

$$\varphi(T_{c(l)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(T_{c(0)} - T_{c(l)})^2}{2\sigma^2}\right],\qquad(1)$$

где σ — параметр (или степень) размытия $\Phi \Pi$.

Это дает для суммарного объема АСЭ областей V в предположении их одинакового размера выражение

$$V = \frac{1}{\sqrt{2\pi}\,\sigma} \int_{T}^{\infty} \exp\left[-\frac{(T_{c(0)} - T_{c(l)})^2}{2\sigma^2}\right] dT_{c(l)}, \quad (2)$$

т.е. табличный интеграл вероятности.

Высокочастотную диэлектрическую проницаемость ε_{∞}' можно подсчитать по формуле Лихтенекера

$$\varepsilon_{\infty}' = (\varepsilon_{PE}')^{1-V} (\varepsilon_{AS}')^V, \qquad (3)$$

где ε'_{PE} относится к параэлектрической фазе, а ε'_{AS} — к антисегнетоэлектрической.

При $T_{c(0)} = -126^{\circ}$ С, $\sigma = 28^{\circ}$ С, $\varepsilon'_{PE} = 130$, $\varepsilon'_{AS} = 50$ результат представлен черными точками на рис. 1.

Диэлектрическая проницаемость, связанная с релаксацией, рассчитана по формуле

$$\varepsilon' - \varepsilon'_{\infty} = \frac{4\pi N_0 \mu^2}{3kT} \frac{1}{1 + \omega^2 \tau^2},\tag{4}$$

где μ — релаксирующий дипольный момент, N_0 — число таких моментов в 1 sm³, τ — время релаксации.

4 Журнал технической физики, 1997, том 67, № 10

Из-за недостатка экспериментальных данных за высокочастотную проницаемость ε'_{∞} бралась кривая, полученная при 10⁴ Hz, за низкочастотную — кривая для частоты 400 Hz.

Для оценки площади релаксации границ весь объем кристалла делился на кубики объемом 10⁻¹⁸ cm³ (т.е. такого же размера, как у полярных областей при размытых СЭ ФП). Принималось, что АСЭ области образуются в пределах этих кубиков. Вероятность того, что стенки кубиков служат границами между АСЭ и ПЭ областями равна v(1 - v), а число таких границ $N_0 = 3 \cdot 10^{18} v (1 - v)$. Объем релаксирующего слоя брался равным $100 \times 100 \times 10 A$ (в соответствии с размером пирохлорной ячейки a = 10 Å). Дипольный момент ячейки принимался таким же, как у Cd₂Nb₂O₇, где $P_s = 10^{-6} \,\mathrm{C/cm^2}$ вблизи T_c . Потенциальный барьер U, разделяющий состояния слоя с дипольным моментом и без него, оценивался из поля активации бокового движения 180° -ной доменной стенки δ , которое для BaTiO₃ равно примерно 3 kV/cm [16] и может рассматриваться как поле, вызывающее образование зародыша с обратным направлением Ps. Тогда энергия активации U равна $\delta^2 \cdot S/(2\varepsilon')$, где S — площадь релаксирующего слоя, ε' взято равным 50. Частота собственных колебаний дипольного момента релаксирующего слоя принята равной 10¹³ Hz. Результаты расчета для частоты 400 Hz представлены на рис. 1 светлыми точками.

Разумеется, не следует придавать этому расчету какоелибо количественное значение. Что он действительно дает, так это оценку порядка величины тех параметров, которые входят в расчетные формулы: $\sigma \approx 30$ K, $N_0 \approx 10^{18}v(1-v), \mu \approx 10^{-25}$ С · cm, $U \approx 0.3$ eV. Таким образом, предложенную модель, рассматривающую обсуждаемые в ней пирохлоры как несобственные антисегнетоэлектрики, у которых средняя температура ФП сооответствует не максимуму $\varepsilon'(T)$, а ее низкотемпературному спаду, по-видимому, можно признать правильной. При этом релаксационный характер диэлектрической поляризации связан с термически активированым параэлектрическим-актисегнетоэлектрическим фазовым переходом в поверхностных слоях АСЭ областей.

Говоря о конкретных рекомендациях по поиску новых конденсаторных материалов, следует указать на предпочтительность пирохлоров с формулой А2В2О7, поскольку существует опасение, что в пирохлорах А2В2О6 большая концентрация дефектов по кислороду может вызвать нежелательную ионную проводимость и старение материала. Ясно, что Т_т должна лежать заметно ниже интервала рабочих температур. Только в этом случае можно обеспечить низкие значения диэлектрических потерь в рабочем интервале температур. По-видимому, как чаще всего и бывает, поиск новых материалов будет основан на изучении твердых растворов. В этой связи представляло бы интерес исследование твердых растворов сегнетоэлектриков PbBiZrNbO7, PbBiTiNbO7 и PbDyTiNbO7 в пирохлорах — несобственных антисегнетоэлектриках. Возможно, что при этом удалось бы существенно поднять диэлектрическую проницаемость без повышения диэлектрических потерь выше T_m .

Список литературы

- [1] Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений. Л.: Наука, 1985. 396 с.
- [2] Исупов В.А., Тарасова Г.И. // ФТТ. 1983. Т. 25. Вып. 4. С. 1013–1017, 1018–1024.
- [3] Krainik N.N., Kamzina L.S., Salaev F.M. // Ferroelectrics. 1985. Vol. 64. P. 357–358.
- [4] Салаев Ф.М., Камзина Л.С., Крайник Н.Н. // ФТТ. 1992.
 Т. 34. Вып. 6. С. 1843–1849.
- [5] Kolpakova N.N., Margraf R., Polomska M. // J. Phys. Condens. Matter. 1994. Vol. 6. N 14. P. 2787–2798.
- [6] Головщикова Г.И., Исупов В.А., Тутов А.Г. и др. // ФТТ. 1972. Т. 14. Вып. 10. С. 2952–2956.
- [7] Смоленский Г.А., Исупов В.А., Головщиков Г.И., Тутов А.Г. // Неорган. материалы. 1976. Т. 12. № 2. С. 297– 301.
- [8] Bernard D., Pannetier J., Lucas J. // Ferroelectrics. 1978.
 Vol. 21. P. 429–435.
- [9] Беляев И.Н., Фесенко Е.Г., Пересунько А.Ф., Чернер Я.Е. // Изв. АН СССР. Сер. физ. 1975. Т. 39. № 5. С. 1103–1107.
- [10] Стефанович С.Ю., Аверьянова Л.А., Оконенко С.А. и др. // Кристаллография. 1980. Т. 25. № 5. С. 979–983.
- [11] Демуров Д.Г., Никифоров Л.Г., Висков А.С., Веневцев Ю.Н. // ФТТ. 1969. Т. 11. Вып. 12. С. 3674–3679.
- [12] Никифоров Л.Г., Иванова В.В., Веневцев Ю.Н., Жданов Г.С. // Неорган. материалы. 1968. Т. 4. № 3. С. 381–385.
- [13] Никифоров Л.Г., Петров В.М., Веневцев Ю.Н. // Изв. АН СССР. Сер. физ. 1967. Т. 31 № 7. С. 1074–1079.
- [14] Капышев А.Г., Стефанович С.Ю., Веневцев Ю.Н., Кацнельсон Л.М. // Кристаллография. 1976. Т. 21. № 4. С. 838–842.
- [15] Cai X., Zhang L., Yao X. // Ferroelectrics. 1994. Vol. 154.
 P. 319–324.
- [16] Miller R.C., Savage A. // J. Appl. Phys. 1960. Vol. 31. P. 662–672.