05;11;12

Термостабильность магнитных параметров эпитаксиальных феррит-гранатовых пленок при воздействии планарных радиальных напряжений

© В.Т. Довгий, Т.Г. Астафьева, Ф.Г. Барьяхтар, Г.И. Ямпольская

Донецкий физико-технический институт АН Украины, 340114 Донецк, Украина

(Поступило в Редакцию 28 мая 1996 г.)

Исследовано влияние внешнего планарного радиального давления на термостабильность магнитных параметров эпитаксиальных феррит-гранатовых пленок. Исследования проводились в интервале температур 200– 500 К и внешнего механического напряжения 0–40 кГ/мм². Показано, что с помощью внешнего планарного радиального давления возможно улучшить термостабильность магнитных параметров в 1.5–2 раза, а также значительно изменить область монодоменности вблизи точки компенсации при ориентационных фазовых переходах.

Одним из важных требований, предъявляемых к материалам, содержащих цилиндрические магнитные домены, является температурная стабильность магнитных параметров [1–11]. В данной работе исследовалось влияние внешнего планарного радиального давления на термостабильность магнитных параметров ферритгранатовых пленок составов (YSmLuCa)₃(FeGe)₅O₁₂ (1), (YSmLu)₃(FeGa)₅O₁₂ (2), (YGdTm)₃(FeGa)₅O₁₂ (3), выращенных на подложках Gd₃Ga₅O₁₂ ориентации (111). Исследования проводились в интервале температур 200-500 К и внешнего механического напряжения 0-40 кГ/мм² на магнитооптических установках с использованием эффекта Фарадея. В данной работе показано, что с помощью внешнего планарного радиального напряжения можно значительно улучшить термостабильность магнитных параметров эпитаксиальных ферритгранатовых пленок.

На рис. 1 для пленки состава (YSmLuCa)₃(FeGe)₅O₁₂ приведены температурные зависимости характеристической длины *l*, энергии стенки σ_w , намагниченности насыщения $4\pi M_s$, поля анизотропии H_A , обменной константы *A*, фактора качества *Q*, полупериода полосовой структуры $P_0/2$, поля коллапса ЦМД H_k , периода *a* и диаметра ЦМД *d* в решетке ЦМД при внешнем напряжении $\sigma_{\rm BH} = 0$ (светлые точки) и $\sigma_{\rm BH} \neq 0$ (черные точки).

Температурные коэффициенты магнитных параметров, определяемые как $P = [dP/dT/P] \cdot (100\%)$, где P — любой (обобщенный) из выше перечисленных статических параметров эпитаксиальных феррит-гранатовых пленок при $\sigma_{\rm BH} = 0$ и $\sigma_{\rm BH} = 18$ кГ/мм², приведены в табл. 1. Температурная зависимость характеристической длины l минимальна, если изменение $4\pi M_s$ и σ_w компенсируется, т. е. $\Delta M_s/M_s = \Delta \sigma_w/2\sigma_w$ [4].

На рис. 2 и табл. 2 для состава (YSmLu)₃(FeGa)₅O₁₂ приведены аналогичные температурные зависимости магнитных параметров и их температурные коэффициенты. Для эпитаксиальных феррит-гранатовых пленок состава (YGdTm)₃(FeGa)₅O₁₂, имеющих точку компенсации близко к комнатной температуре (~ 215 K), рис. 3 иллюстрирует изменение магнитных параметров от температуры, а табл. 3 — их температурные коэффициенты при комнатной температуре (293 K) и 353 K соответственно для исходной пленки ($\sigma_{\rm BH} = 0$) и $\sigma_{\rm BH} = 16$ кГ/мм².

Анализ графиков для пленок первых двух составов показывает, что магнитные параметры исходных пленок ($\sigma_{\rm BH} = 0$) и находящихся под внешним напряжением ($\sigma_{\rm BH} \neq 0$) монотонно уменьшается с температурой с зависимостью, близкой к линейной (за исключением области возле точки Нееля). Термостабильность магнитных параметров пленок, находящихся под внешним

Рис. 1. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава (YSmLuCa)₃(FeGe)₅O₁₂ при $\sigma_{\rm BH} = 0$ (светлые точки) и $\sigma_{\rm BH} \neq 0$ (черные точки).

$σ_{\rm bh},$ κΓ/mm ²	<i>Т</i> , К	<i>l</i> _T , %/K	σ _T , %/K	<i>M_T</i> , %/K	<i>H</i> _A , %/K	<i>A_T</i> , %/K	H_k , %/K	<i>P</i> ₀ /2, %/K	<i>a_T</i> , %/K	d_T , %/K	<i>K</i> _{<i>u</i>} , %/K	$rac{\Delta\sigma_{_W}}{\sigma_{_W}} / rac{\Delta M}{M}$
0 18	293 293	$-0.32 \\ -0.16$	$-0.82 \\ -0.48$	$-0.28 \\ -0.16$	$-0.73 \\ -0.29$	$-0.4 \\ -0.35$	$-0.17 \\ -0.11$	$-0.22 \\ -0.07$	$-0.14 \\ -0.07$	$-0.13 \\ -0.05$	$-0.92 \\ -0.67$	2.7 2.2

Таблица 1. Температурные коэффициенты магнитных параметров для пленки состава (YSmLuCa)₃(FeGe)₅O₁₂

Таблица 2. Температурные коэффициенты магнитных параметров для пленки состава (YSmLu)₃(FeGa)₅O₁₂

$\sigma_{\rm BH}, {\rm K} \Gamma/{\rm MM}^2$	<i>Т</i> , К	<i>l</i> _T , %/K	σ _T , %/K	<i>M_T</i> , %/K	<i>H</i> _A , %/K	<i>A_T</i> , %/K	<i>H_k</i> , %/K	<i>P</i> ₀ /2, %/K	<i>a_T</i> , %/K	<i>d</i> _{<i>T</i>} , %/K	<i>K</i> _{<i>u</i>} , %/K	$rac{\Delta\sigma_w}{\sigma_w}/rac{\Delta M}{M}$
0 15	293 293	$-0.43 \\ -0.19$	$-1.6 \\ -0.5$	$-0.34 \\ -0.16$	$-0.87 \\ -0.44$	$-0.94 \\ -0.4$	$-0.15 \\ -0.09$	$-0.30 \\ -0.12$	$-0.26 \\ -0.1$	$-0.22 \\ -0.13$	$-1.19 \\ -0.60$	2.9 2.9

радиальным напряжением, улучшилась. Критерий температурной стабильности магнитных параметров (характеристической длины *l*, намагниченности насыщения $4\pi M_s$, плотности энергии границ σ_w , поля коллапса H_k , равновесного периода полосовой доменной структуры P_0) сформулирован в работах [1,2,8] $|P_T| \leq 0.2-0.3$ %/К. Из приведенных таблиц видно, что температурные коэффициенты магнитных параметров для пленок, находящихся под внешним напряжением, уменьшились в 1.5–2 раза и лучше удовлетворяют критерию температурной стабильности.

Критерий малого изменения характеристической длины l [4] $\Delta M/M = \Delta \sigma/2\sigma_w$, где $\Delta M/M$ и $\Delta \sigma/\sigma_w$ относительные изменения намагниченности насыщения и энергии доменных границ соответственно, для пленок 1-го и 2-го состава при $\sigma_{\rm BH} = 0$ и $\sigma_{\rm BH} \neq 0$ принимает значения $\Delta \sigma/\sigma/\Delta M/M = 2.62-3.1$.

Рис. 2. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава (YSmLu)₃(FeGa)₅O₁₂ при $\sigma_{\rm BH} = 0$ (светлые точки) и $\sigma_{\rm BH} \neq 0$ (черные точки).

при воздействии внешнего напряжения достигается за счет того, что изменение магнитных параметров по температуре компенсируется их изменением по напряжению. В работе [12] показано, что значения магнитных параметров с упративением по

Улучшение термостабильности магнитных параметров

раметров с увеличением внешнего напряжения уменьшаются (производная отрицательна), аналогичны изменения параметров и с изменением температуры. Если пленка при комнатной температуре будет находиться при некотором внешнем напряжении, которое с ростом температуры будет убывать, а с понижением температуры увеличиваться, то в некотором диапазоне температур изменение магнитных параметров по температуре и напряжению будет компенсировать друг друга $(-dP/dT = +dP/d\sigma)$. Улучшение термостабильности параметров доменной структуры обеспечивается прежде

Рис. 3. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава (YGdTm)₃(FeGa)₅O₁₂ при $\sigma_{\rm BH} = 0$ (светлые точки) и $\sigma_{\rm BH} \neq 0$ (черные точки).

$\sigma_{\rm BH}$, кГ/мм ²	<i>T</i> , K	l_T , %/K	σ_T , %/K	M_T , %/K	<i>H</i> _A , %/K	<i>A_T</i> , %/K	H_k , %/K	$P_0/2, \%/K$	a_T , %/K	d_T , %/K	<i>K</i> _u , %/K
0	293	-1.91	-0.98	+0.51	-1.53	-1.08	+1.37	-1.3	-0.93	-0.93	-0.86
16		-1.38	-0.55	+0.38	-1.06	-0.62	+0.67	-0.66	-0.65	-0.68	-0.48
0	353	-1.37	-1.47	-0.11	-1.52	-1.36	+0.31	-0.75	-0.53	-0.54	-1.57
16		-0.82	-0.95	-0.08	-0.97	-0.88	+0.05	-0.41	-0.22	-0.35	-1.04

Таблица 3. Температурные коэффициенты магнитных параметров для пленки состава (YGdTm)₃(FeGa)₅O₁₂

всего за счет изменения одноосной анизотропии при воздействии внешнего напряжения.

Так как ЭФГП состава (YGdTm)₃(FeGa)₅O₁₂ имеет точку компенсации вблизи комнатной температуры, поэтому температурные коэффициенты магнитных параметров при 293 и 353 К у нее хуже, чем у пленок состава 1 и 2. Термостабильность магнитных параметров для пленки состава 3 при наличии внешнего планарного радиального напряжения улучшается (рис. 3 и табл. 3). В области температур, вблизи точки Нееля и точки компенсации, изменение магнитных параметров по температуре большое (прежде всего M_s и H_A) и не компенсируется их изменением по давлению.

На рис. 4 для состава (YGdTm)₃(FeGa)₅O₁₂ приведена зависимость магнитного насыщения пленки в планарном поле H_{\perp} от температуры вблизи точки компенсации при $\sigma_{\rm BH} = 0$ и $\sigma_{\rm BH} \neq 0$. Интервал монодоменности в области точки компенсации при $\sigma_{\rm BH} = 0$ составил $\Delta T = 60$ K, при $\sigma \approx 25$ кГ/мм² $\Delta T = 10$ К ($\sigma = 25$ кГ/мм² соот-

Рис. 4. Зависимость магнитного насыщения пленки в планарном поле H_{\perp} от температуры вблизи точки компенсации при $\sigma_{\scriptscriptstyle \mathrm{BH}}=0$ и $\sigma_{\scriptscriptstyle \mathrm{BH}}
eq 0.$

ветствует температуре 210 К). Таким образом, интервал монодоменности по температуре ЭФГП (состояние с однородным намагничиванием) уменьшился в 6 раз и это сужение области монодоменности связывается прежде всего с изменением одноосной анизотропии при планарном радиальном напряжении. Смещение точки компенсации незначительно $\approx 5~{
m K}$ (определяется как середина области монодоменности по полю насыщения).

Таким образом, показано, что с помощью внешнего планарного радиального напряжения возможно улучшить термостабильность магнитных параметров ферритгранатов, а также значительно изменить область монодоменности, вблизи точки компенсации, при фазовых ориентационных переходах.

Список литературы

- [1] Телеснин Р.В., Дудоров В.Н., Рандошкин В.В. // ФТТ. 1975. Т. 17. Вып. 10. С. 3015-3018.
- [2] Телеснин Р.В., Дудоров В.Н., Марченко А.Т., Рандошкин В.В. // Микроэлектроника. 1979. Т. 8. № 1. С. 84-89.
- Ohta N., Ishida F., Ikeda T., Sugita Y. // J. Appl. Phys. 1980. [3] Vol. 51. N 1. P. 589-593.
- Smith D.M., Anderson A.W. // AIP Conf. Proc. 1972. Vol. 5. [4] P. 120-124.
- Dimayan M.J., Della Torre E. // J. Appl. Phys. 1972. Vol. 43. [5] N 3. P. 1285-1287.
- Dimayan M.J., Della Torre E. // J. Appl. Phys. 1972. Vol. 43. [6] N 12. P. 5207-5209.
- Yamaguchi K., Uchishiba M., Suzuki T. // IEEE Trans. Magn. [7] 1980. Vol. MAG-16. N 5. P. 616-618.
- Nielsen J.W. // IEEE Trans. Magn. 1976. Vol. MAG-12. N 4. [8] P. 327-347.
- [9] Белов К.П., Белянчикова М.А., Левитин Р.З., Никитин С.А. Редкоземельные ферро- и антиферромагнетики. М.: Наука, 1965. С. 319.
- [10] Gualtieri D.M., Tumelty P.F., Gilleo M.A., // J. Appl. Phys. 1979. Vol. 50. N 11. P. 7824-7826.
- [11] Kestigian M., Smith A.B., Bekebrede W.R. // J. Appl. Phys. 1978. Vol. 49. N 3. P. 1873-1875.
- [12] Барьяхтар В.Г., Довгий В.Т., Сухаревский Б.Я. и др. // ФТТ. 1983. Т. 25. Вып. 5. С. 1415-1422.