^{05;06;12} Магнитная анизотропия пленок (Gd, Bi)₃Fe₅O₁₂ с ориентацией (100) и (110)

© В.В. Рандошкин, В.И. Козлов, В.Ю. Мочар, Н.В. Васильева, В.В. Воронов

Совместная хозрасчетная лаборатория "Магнитооптоэлектроника" Института общей физики РАН при Мордовском государственном университете им. Н.П. Огарева, 430000 Саранск, Россия

(Поступило в Редакцию 28 мая 1996 г.)

Один из путей повышения быстродействия магнитооптических устройств на базе висмутсодержащих монокристаллических пленок феррит-гранатов состоит в использовании пленок с ромбической магнитной анизотропией [1–5]. Такая магнитная анизотропия, в частности, имеет место, если в состав пленок с ориентацией, отличной от (111), вместе с ионами Bi^{3+} входят ионы Y^{3+} [2, 6–9]. Ромбическая анизотропия обнаружена также в пленках, содержащих дополнительно ионы Gd^{3+} [10,11]. Однако остается неясным, вносят ли ионы Gd^{3+} вклад в анизотропию или же она полностью определяется парой ионов Bi^{3+} и Y^{3+} . Поиску ответа на этот вопрос и посвящена настоящая работа.

Пленки состава $Bi_xGd_{3-x}Fe_5O_{12}$ выращивали методом жидкофазной эпитаксии из переохлажденного растворарасплава на основе PbO-Bi₂O₃-B₂O₃ на подложках Nd₃Ga₅O₁₂ с ориентацией, близкой к (100) и (110). Кристаллографическую ориентацию (угол θ отклонение их плоскости от базисной) контролировали на дифрактометре ДРОН-2.0 с точностью 0.1°.

Рассогласование параметров решеток пленки и подложки $\delta a/a$ определяли стандартным методом по кривым качания, измеренным на двукристальном рентгеновском спектрометре. Спектрометр был собран на базе дифрактометра ДРОН-3М и блока монохроматора с использованием совершенного кристалла Ge и отражения (333). Для идентификации пиков от пленки и подложки записывали кривые качания для двух порядков отражений и сравнивали соотношения интенсивностей пиков.

Для исследованных пленок наблюдается только один практически не искаженный дифракционный пик. Расчет линейного коэффициента поглощения для пленок состава Bi_xGd_{3-x}Fe₅O₁₂ при 0, 5 < x < 1 дает значение линейного коэффициента поглощения $\mu \approx 1500$ см⁻¹ для излучения Cu K_{α} . Оценку максимальной толщины пленки h_{max} , позволяющей проводить запись кривых качания от пленки и подложки, проводили по формуле [12–14]

$$h_{\max} = k(\sin\theta)/(2\mu),\tag{1}$$

где k = 4.61 для случая, когда доля интенсивности излучения рассеянного излучения от пленки составляет 99%; для этого случая $h_{\rm max} \approx 7$ мкм.

Отсутствие второго пика можно трактовать как малую величину рассогласования, не позволяющую разрешить

пики пленки и подложки. Верхний предел этого рассогласования можно оценить, приняв его равным половине полуширины наблюдаемой кривой качания $\Delta \theta = 20''$, что дает $\delta a/a \approx 8 \cdot 10^{-5}$. Значения θ и $\delta a/a$ приведены в таблице. Учитывая отсутствие рассогласования параметров решеток пленки и подложки по данным табл. 9.4 в [12], определили, что x = 0.78.

Для оценки намагниченности насыщения $4\pi M_s$ исследованных пленок использовали данные табл. 9.3 в [15]. Полагали, что в системе $Bi_xGd_{3-x}Fe_5O_{12}$ намагниченность насыщения увеличивается с ростом *x* по линейному закону от значения, соответствующего $Gd_3Fe_5O_{12}$, до значения, соответствующего гипотетическому гранату $Bi_3Fe_5O_{12}$. Намагниченность насыщения для последнего считали такой же, как у $Y_3Fe_5O_{12}$. Оценка дает $4\pi M_s = 500$ Гс.

Параметры магнитной анизотропии исследовали методом ферромагнитного резонанса на частоте 9.34 ГГц. При этом регистрировали резонансные поля при ориентации внешнего магнитного поля перпендикулярно (H_n , перпендикулярный резонанс) и параллельно (H_i , параллельный резонанс) плоскости пленки, а также соответствующие значения ширины линии резонанса $2\Delta H_n$ и $2\Delta H_{in}$. Для определения анизотропии в плоскости пленки регистрировали азимутальные зависимости $H_{in}(\varphi)$ при параллельном резонансе. Результаты измерений приведены в таблице, где $H_{in\min}$ и $H_{in\max}$ — минимальное и максимальное значения резонансного поля при параллельном резонансе соответственно, δH_{in} — разность этих значений.

Результаты рентгеновских и резонансных измерений для пленок $(Gd,Bi)_3Fe_5O_{12}$

Ориентация	(100)	(110)
θ , grad	2.3	1.6
$\delta a/a \cdot 10^4$	< 0.8	< 0.8
$H_{in\min}$, Oe	3130	2240
$H_{in \max}$, Oe	3490	3330
$\delta H_{\min}, \mathrm{Oe}$	360	1090
$2\Delta H_{\min}, Oe$	170	70
H_n , Oe	3390	4300
$2\Delta H_n$, Oe	170	70
$H_{\rm eff}, { m Oe}$	-207	-870

Рис. 1. Азимутальная зависимость $H_{in}(\varphi)$ резонансного поля при параллельном резонансе для пленок с ориентацией (100).

Рис. 2. Азимутальная зависимость $H_{in}(\varphi)$ резонансного поля при параллельном резонансе для пленок с ориентацией (110).

Поскольку исследуемые пленки не содержат быстрорелаксирующих магнитных ионов, а гиромагнитное отношение медленнорелаксирующих ионов Gd^{3+} и Fe^{3+} одинаково и составляет $\gamma_0 = 1.76 \cdot 10^7 \text{ Oe}^{-1} \cdot \text{c}^{-1}$, то и для феррит-граната в соответствии с формулой Уангснесса [1,16]

$$\gamma = (M_{\rm Gd} + M_{\rm Fe})/(M_{\rm Gd}/\gamma_{\rm Gd} + M_{\rm Fe}/\gamma_{\rm Fe}), \qquad (2)$$

эффективное значение гиромагнитного отношения γ равно γ_0 . Здесь $M_{\rm Gd}$ — суммарный магнитный момент ионов ${\rm Gd}^{3+}$ в додекаэдрической подрешетке структуры граната, $M_{\rm Fe}$ — суммарный магнитный момент ионов

 ${
m Fe}^{3+}$ в тетра- и октаэдрической подрешетках. Это обстоятельство позволяет в отличие от [17,18] определить эффективное поле магнитной анизотропии $H_{
m eff}$ только по данным перпендикулярного резонанса, для которого резонансное соотношение можно записать как

$$\omega/\gamma = H_{\rm eff} + H_n, \tag{3}$$

где ω — круговая частота ферромагнитного резонанса.

Тот факт, что ионы Gd^{3+} и Fe^{3+} в динамике ведут себя одинаково, подтверждается результатами исследований вблизи точки компенсации момента импульса [5,18,19]. В частности, при введении ионов Gd^{3+} в состав пленки уровень замещения железа немагнитными ионами, необходимый для обеспечения компенсации момента импульса, снижается. Значения $H_{\rm eff}$ приведены в таблице.

Типичные зависимости $H_{in}(\varphi)$ для пленок с ориентацией (100) и (110) приведены на рис. 1 и 2 соответственно, где на вставках показано расположение кристаллографических осей в плоскости пленки. Видно, что для пленок с ориентацией (100) наличие четырех эквидистантных максимумов на кривой $H_{in}(\varphi)$ (рис. 1) отражает кристаллографическую анизотропию пленки, а их положение соответствует осям типа (100). При этом значение δH_{in} относительно невелико (см. таблицу).

В пленках с ориентацией (110) по сравнению с ориентацией (100) магнитная анизотропия в плоскости пленки выше более чем в 3 раза (ср. значения δH_{in} в таблице). При этом на азимутальной зависимости резонансного поля при параллельном резонансе (рис. 2) наблюдается только два пика, что характерно для пленок с ромбической магнитной анизотропией.

Сравнение приведенной выше оценки $4\pi M_s$ и приведенных в таблице значений $H_{\rm eff}$ позволяет заключить, что основной вклад в эффективное поле магнитной анизотропии вносят поля размагничивания.

Таким образом, в настоящей работе показано, что в пленках феррит-гранатов с ориентацией (110), содержащих в додекаэдрической подрешетке только ионы Gd³⁺ и Bi³⁺, в процессе эпитаксиального роста наводится ромбическая магнитная анизотропия.

Список литературы

- [1] Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
- [2] Рандошкин В.В., Чани В.И., Логунов М.В. и др. // Письма в ЖТФ. 1989. Т. 15. Вып. 14. С. 42–44.
- [3] Randoshkin V.V. // Proc. SPIE. 1990. Vol. 1307. P. 10-19.
- [4] Randoshkin V.V. // Proc. SPIE. 1991. Vol. 1469. P. 796-803.
- [5] Рандошкин В.В. Магнитооптические пленки ферритгранатов и их применение. Тр. ИОФАН. Т. 35. М.: Наука, 1992. С. 49–107.
- [6] Hibiya T., Makino H., Konishi S. // J. Appl. Phys. 1981. Vol. 52. N12. P. 7347–7352.
- [7] Kikukawa S., Isomura S., Iwata S. // J. Appl. Soc. Jap. 1983. Vol. 7. N2. P. 83–86.
- [8] Рандошкин В.В., Сигачев В.Б., Чани В.И., Червоненкис А.Я. // ФТТ. 1989. Т. 31. Вып. 7. С. 70–76.

- [9] Логунов М.В., Рандошкин В.В., Сажин Ю.Н. // ФТТ. 1990. Т. 32. Вып. 5. С. 1456–1460.
- [10] Hamamoto M., Iwata S., Kikukawa S. // IEEE Trans. Magn. 1984. Vol. MAG-20. N5. P. 1105–1107.
- [11] Кукушкина И.Ю., Рандошкин В.В., Сигачев В.Б., Тимошечкин М.И. // Современный уровень разработок запоминающих и логических устройств на цилиндрических магнитных доменах. Тез. докл. Всесоюз. семинара. М., 1985. С. 37.
- [12] Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. М., 1994.
- [13] *Тхорик Ю.А., Хазан Л.С.* Пластическая деформация и дислокации несоответствия в гетероэпитаксиальных структурах. Киев: Наукова думка, 1983.
- [14] Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: ГИФМИ, 1961. 38 с.
- [15] Балбашов А.М., Лисовский Ф.В., Раев В.К. и др. // Элементы и устройства на цилиндрических магнитных доменах. Справочник / Под. ред. Н.Н. Евтихиева, Б.Н. Наумова. М.: Радио и связь, 1987. 488 с.
- [16] Wangsness R.K. // Phys. Rev. 1953. Vol. 91. N5. P. 1085– 1091.
- [17] Gangulee K., Kobliska R.J. // J. Appl. Phys. 1980. Vol. 51. N6. P. 3333–3337.
- [18] Логинов Н.А., Лагунов М.В., Рандошкин В.В. // ФТТ. 1989. Т. 31. Вып. 10. С. 58–63.
- [19] Рандошкин В.В., Сигачев В.Б. // Письма в ЖЭТФ. 1985. Т. 42. Вып. 1. С. 34–37.