05;12

Особенности размытия сегнетоэлектрического фазового перехода в твердых растворах ферровольфрамата-титаната свинца

© И.П. Пронин, Т. Аязбаев, Н.В. Зайцева, Т.А. Шаплыгина, В.А. Исупов

Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

(Поступило в Редакцию 4 декабря 1995 г.)

Основными характеристиками размытых сегнетоэлектрических фазовых переходов (РСЭФП) [1] являются температура максимума диэлектрической проницаемости T_m , температура деполяризации T_d образца, поляризованного при низкой температуре и нагреваемого без поля, и степень размытия σ , определяемая из температурной зависимости диэлектрической проницаемости ε' при $T > T_m$,

$$1/\varepsilon' = \left[1/(2\varepsilon'_m\sigma^2)\right](T-T_m)^2,$$

где ε'_m — величина диэлектрической проницаемости при T_m , измеренная при низкой частоте (обычно 1 кГц).

Степень размытия СЭРФП может определяться не только величиной σ , но и величиной $\Delta T_{md} = T_m - T_d$. Казалось бы, между ΔT_{md} и σ должна быть простая связь. В работе [2] предполагается, что эта зависимость линейна.

В последнее время авторы предприняли ряд работ по выявлению связи ΔT_{md} и σ в различных сегнетоэлектрических твердых растворах. В системе (1 - x)PbMg_{1/3}Nb_{2/3}O₃(PMN) + xPbTiO₃(PT) (с x от 0 до 0.15) [3] эта связь действительно оказалась линейной $\sigma = (22 + 5)^{\circ}$ C + $(0.32 + 0.04)\Delta T_{md}$. В то же время в системе (1 - x)PbMg_{1/3}Nb_{2/3}O₃(PNN) при x от 0 до 0.14 [4] эта связь практически отсутствует: величина σ при x = 0 - 0.09 не меняется и равна 52°C, а ΔT_{md} варьируется от 45 до 100°C. При $x > 0.10 \Delta T_{md}$ падает до величины в несколько градусов, т.е. T_d почти достигает T_m . При этом σ слабо возрастает (до $\approx 60^{\circ}$ C).

Линейная зависимость ΔT_{md} от σ в системе РМN-РТ пояснений не требует: чем больше σ , тем больше ΔT_{md} . Приближение T_d к T_m при x > 0.10 объясняется в работе [4] в предположении, что при концентрации РТ больше 10 мол.% в кристалле имеется так называемый фазовый переход смятия (т.е. несегнетоэлектрический фазовый переход) (см. гл. 13 в [1]), происходящий при $T > T_m$. Тогда РСЭФП происходит в уже деформированной из-за смятия параэлектрической фазе, которая может оказать ориентирующее действие на возникающие при РСЭФП полярные области. Если характер искажения решетки при фазовом переходе смятия и РСЭФП одинаков, то направление дипольных моментов полярных областей может определяться искажением решетки неполярной фазы, а знак проекций моментов на это направление — вектором внешнего электрического поля. Энергия полярных областей, если их деформация согласуется с деформацией окружающей их параэлектрической среды, будет ниже, чем была бы при их возникновении в кубической фазе. Более высокая устойчивость полярных областей и позволит им в этом случае сохранить свою ориентацию вплоть до $T_d \cong T_m$.

данной работе В ΜЫ исследовали зависимость ΔT_{md} ОТ σ для твердых растворов (1-x)PbFe_{2/3}W_{1/3}O₃(PFW) + xPbTiO₃ c x ot 0 Образцы изготавливались из оксидов по до 0.24. керамической технологии в виде дисков с диаметром 8-9 мм и толщиной 1-2 мм. Спекание проводилось в закрытом платиновом тигле в атмосфере паров PbO. Ферровольфромат свинца спекался при 900°С, состав с *x* = 0.16 — при 800°С (самая низкая температура найденная для сегнетоэлектрической спекания, керамики!). Состав с x = 0.10 обжигался при 870°С, состав с x = 0.16 — при 930°С, с x = 0.24 при 950°С. Выдержка при указанных температурах составляла 1 ч. Потери PbO не превышали 0.3% от его навески, плотность была равна 7.62-8.03 г/см.

Рентгенографический контроль показал, что образцы всех составов были однофазны, т.е. состояли только из перовскитовой фазы.

Образцы поляризовались при охлаждении от 20 до -140° С в постоянном поле 15 кВ/см. При -140° С поле снималось, образец на короткое время закорачивался, а затем при нагревании без поля проводились измерения ε' и tg δ при частоте 1 кГц и резонансной и антирезонансной частотах (f_r и f_a) радиальных колебаний (по обычной методике [15]).

На основе полученных данных находилась T_m , а по графику $1/\varepsilon' = F[(T - T_m)^2]$ определялась величина σ . Величина $T_d = T_d^{\text{м}}$ находилась по минимуму в температурной зависимости резонансной частоты, который примерно соответствует температуре начала деполяризации. Находилась также величина $T_d = T_d^e$ — температура конца пьезоколебаний, близкая к температуре полной деполяризации.

На рис. 1 показаны температурные зависимости ε' и tg δ . Кривые $\varepsilon'(T)$ имеют довольно пологие максимумы. Температуры максимумов повышаются с ростом *x*. Обращает на себя внимание наличие двух максимумов на кривых tg $\delta(T)$.

Рис. 1. Температурные зависимости диэлектрической проницаемости ε' (сплошные линии) и диэлектрических потерь tg δ (штриховые линии) твердых растворов (1 - x) PFW + xPT. Цифры у кривых — концентрация x в мол.%.

На рис. 2 представлены зависимости T_m , T_d^{M} , T_d^e , ΔT_{md}^{M} и σ от концентрации x. Возрастание T_m неудивительно, поскольку температура Кюри титаната свинца составляет 500°С. Возрастает и T_d^{M} , причем всегда остается ниже T_m . Величина T_d^e также повышается, но при этом она становится все ближе к T_m , а при x = 0.24 даже превышает T_m . Видно, что ΔT_{md}^{M} проходит через пологий максимум при x = 0.10, а степень размытия σ слегка уменьшается при изменении x от 0 до 0.05 (от 62 до 55°С), а затем практически не меняется (полагая, что сохранение пьезоколебаний при $T > T_m$ связано с какими-либо побочными факторами, мы исключили величину ΔT_{md}^e из дальнейшего рассмотрения).

На рис. З показана зависимость $\Delta T_{md}^{\rm M}$ от σ . Из него можно сделать вывод, что в твердых растворах PFW–PT зависимости $\Delta T_{md}^{\rm M}$ от σ практически нет (так же как в системе PMN–PNN). Другими словами, величина σ примерно одинакова у всех твердых растворов при любой концентрации PT (до x = 0.24), тогда как $\Delta T_{md}^{\rm M}$ варьируется в широких пределах.

Обсудим теперь поведение характеристик размытия фазового перехода в изученных твердых растворах. В системе PFW–PT в отличие от системы PMN–PNN характер кривых $T_d(x)$ не дает оснований для предположения о существовании фазового перехода смятия. Поэтому приведенное в [4] объяснение поведения T_d и ΔT_{md} в данном случае не годится. Здесь сохранение пьезоколебаний при T_m и выше T_m , когда полярные области отделены друг от друга неполярными областями и, лишенные взаимной поддержки, могут легко дезориентироваться, можно объяснить рядом причин.

1) Тривиальная неравновесность твердых растворов, когда наряду с основной сегнетоэлектрической фазой

имеется примесь другой сегнетоэлектрической фазы с более высокой температурой Кюри. Тогда основная фаза ответственна за поведение $\varepsilon'(T)$, а примесная — за величину T_d^e и обе вместе — за наличие двух максимумов tg δ на рис. 1. Но рентгенографический контроль не показал присутствия примесной фазы (трудно предполагать действие этой причины и в твердых растворах PMN–PNN, где $\Delta T_{md}^{\rm M}$ меняется при x = 0.09-0.10 резко, к тому же там примесная фаза, если она есть, является несегнетоэлектрической фазой со структурой типа перовскита). На величину $T_d^{\rm M}$ наличие примесной сегнетоэлектрической фазы, по-видимому, влиять не должно.

2) Существование в ионно-неупорядоченной фазе субмикроскопических ионно-упорядоченных областей, имеющих более высокую температуру Кюри. Состав с x = 0.25 (близкий к изученному составу с x = 0.24) мог бы иметь упорядочение типа $Pb(Fe)_{0.5}(Ti_{0.5}W_{0.5})_{0.5}O_3$, где имеется подрешетка трехвалентного железа и TiW подрешетка со средней валентностью 5. Такие твердые растворы с довольно большой разницей в зарядах подрешеток, находящихся на грани о ионного упорядочения, могут представлять собой ионнонеупорядоченную матрицу, содержащую субмикроскопические ионно-упорядоченные области (с "рентгеноаморфным" упорядочением из-за малых размеров этих областей). Ионно-упорядоченная сегнетоэлектрическая фаза может иметь (и, как правило, имеет [6]) другую температуру Кюри. Если она выше Т_т, то и пьезоколебания сохраняются до $T > T_m$. Наличие двух максимумов tg δ на рис. 1 согласуется с данным предположением. Ионно-упорядоченные сегнетоэлектрические области, ориентированные полем, могут повлиять и на общую устойчивость остаточной поляризации кристалла (или зерна керамики), приближая $T_d^{\rm M}$ к $T_{\rm M}$ и уменьшая $\Delta T_{md}^{\rm M}$. Однако вряд ли они повлияют на величину σ , поскольку она определяется в основном поведением матрицы.

3) Влияние заряженных дефектов решетки, диффундирующих на заряженные границы полярных областей и стабилизирующих эти области и их ориентацию. Если при РСЭФП *Т_m* близка к комнатной температуре *T*_{кт} (как это имеет место при x = 0.16 и 0.24), то уже при комнатной температуре в кристалле присутствует то или иное количество полярных областей (таких, у которых локальная температура Кюри выше Т_{кт}). Приложение сильного поляризующего поля при Ткт ориентирует их дипольные моменты по полю. Заряженные дефекты, диффундируя в решетке, садятся на заряженные границы полярных областей, закрепляются на них и в свою очередь закрепляют эти границы, стабилизируя полярные области и их ориентацию. Локальная температура Кюри этих областей должна повышаться из-за воздействия заряженных дефектов. По мере оседания дефектов на границах их концентрация понижается, так что при последующем охлаждении на границы новых полярных областей садится относительно мало заряженных дефектов и стабилизации новых полярных областей не проис-

Рис. 2. Зависимости T_m (1), T_d^{M} (2), T_{md}^{e} (3), ΔT_{md}^{M} (4) и σ (5) твердых растворов (1 + x)PFW + xPT от концентрации x.

Рис. 3. Зависимость $\Delta T_{md}^{M}(\sigma)$ для твердых растворов (1-x) PFW + xPT.

ходит. При этом опять же можно считать основную часть объема ответственной за поведение σ , а закрепленные полярные области — за поведение T_d^c . По-видимому, при этом повышается общая устойчивость остаточной поляризации, что приведет к приближению $T_d^{\rm M}$ к T_m . Сильное влияние заряженных дефектов решетки очень вероятно в системе PFW–PT, содержащей ионы железа, легко меняющего свою валентность.

Подводя итоги, можно отметить, что все изученные составы системы PFW–PT имеют почти одинаковую величину σ , тогда как $\Delta T_{md}^{\rm M}$ существенно различна у разных составов, уменьшаясь при увеличении содержания PT до x = 0.24. Рассмотренные три возможных объяснения поведения параметров размытия фазового перехода в изученной керамике имеют общую черту: величина σ определяется основной фазой или матрицей, а $\Delta T_{md}^{\rm M}$ или зернами примесной сегнетоэлектрической фазы, или ориентированными и закрепленными субмикроскопическими сегнетоэлектрическими областями. Уменьшение $\Delta T_{md}^{\rm M}$ связано, по-видимому, с влиянием этих областей на устойчивость остаточной поляризации матрицы.

Список литературы

- [1] Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений. Л.: Наука, 1985. 396 с.
- [2] Исупов В.А. // ФТТ. 1992. Т. 34. Вып. 7. С. 2025–2030.
- [3] Аязбаев Т., Зайцева Н.В., Исупов В.А. и др. // ФТТ. 1996.
 Т. 38. Вып. 1. С. 208.
- [4] Аязбаев Т., Зайцева Н.В., Исупов В.А. и др. // Письма в ЖТФ. 1994. Т. 20. Вып. 15. С. 75–79.
- [5] Мэзон У. Пьезоэлектрические кристаллы и их применения в ультраакустике. М.: ИЛ, 1952. 446 с.
- [6] Stenger C.G.F., Scholten F.L., Burgraaf A.J. // Sol. St. Commun. 1979. Vol. 32. P. 989–995.