05;07;11;12

Динамика роста и механизм образования лазерно-индуцированного упорядоченного рельефа поверхности кремния под действием поляризованного излучения

© О.П. Гашков, М.Н. Либенсон, В.С. Макин, Ю.И. Пестов, В.В. Трубаев

Научно-исследовательский институт комплексных испытаний оптико-электронных приборов, 188537 Сосновый Бор, Ленинградская область, Россия

(Поступило в Редакцию 2 ноября 1995 г.)

Целью работы является изучение динамики развития рельефа, теплового свечения и отражательной способности поверхности кремния под действием лазерного излучения вблизи порога плавления; на этой основе сделан вывод о реальном механизме образования рельефа.

Схема экспериментальной установки приведена на рис. 1. В опытах использовались механически полированные поверхности $\langle 111 \rangle$ кремния толщиной 4 мм. Разогрев образца осуществлялся *p*-поляризованным излучением лазера на неодимовом стекле ($\lambda = 1.06$ мкм) с длительностью импульса излучения на полувысоте 0.8 мс. Интенсивность теплового излучения нагретой поверхности регистрировалась в спектральном интервале 0.4–0.9 мкм. Механическая модуляция излучения зондирующего Не–Ne лазера ($f \cong 60$ кГц) использовалась для разделения сигналов дифракции и теплового свечения.

Динамика сигнала теплового свечения поверхности для различных плотностей мощности q воздействующего излучения приведена на рис. 2. При $q \leq 114$ кВт/см² наблюдается приблизительно колоколообразная временная зависимость (рис. 2, a), значение максимума которой плавно растет с ростом плотности мощности излучения. При $q \geq 120$ кВт/см² вблизи вершины кривой появляется точка перегиба (рис. 2, b), с ростом q переходящая в минимум (рис. 2, b), глубина которого, а также расстояние между максимумами растут с q.

Динамика сигнала дифракции зондирующего излучения, типичная для структур с периодом $d = 2\lambda$ ($0 \leq \theta \leq 9^{\circ}$), приведена на рис. 3, *a*. Рис. 3, *б* иллюстрирует динамику структур λ , ранее не наблюдавшихся в остаточном рельефе [1] (остающемся после затвердевания поверхности). Обнаружено наличие остаточных структур λ , занимающих лишь 5–10% зоны воздействия.¹ Динамика структур λ и 2λ регистрировалась одновременно в одной фазе воздействия, так же как и структур d^- и $2d^-$.

На рис. 3, *в*, *г* приведена динамика структур d^- и $2d^-$ (9 $\leq \theta \leq 30^\circ$) [2] соответственно, полученная при q = 123 кВт/см² и $\lambda = 12^\circ$. Как показали опыты, существование структур $2d^-$ связано с существованием структур d^- : при формировании последних формирова-

лись и структуры $2d^-$. При низких q рельеф $2d^-$ занимал преимущественно центральную часть зоны облучения, а d^- — периферийную. В интервале 95–170 кВт/см² глубина рельефа $2d^-$ и занимаемая им площадь возрастали, причем структуры d^- и $2d^-$ возникали в перемежающихся пространственно ограниченных областях. Наблюдавшееся при $q \ge 170-190$ кВт/см² уменьшение амплитуды сигнала дифракции, соответствующего остаточным структурам $2d^-$, связано с уменьшением занимаемой ими площади — формированием в пределах кольца, внутри которого зона локально гладкого расплава.

Динамика изменения отражательной способности поверхности на $\lambda = 0.63$ мкм изучалась путем регистрации интенсивности зеркально отраженного излучения, что позволило определить время начала плавления и оценить снизу долю образующегося на поверхности расплава (заметим, что часть отраженного излучения терялась вследствие дифракции). Изменение отражения обусловлено как температурной зависимостью оптических постоянных кремния [3], так и появлением расплава. Аппроксимируя данные [3], получим, что при $T = T_{melt}$ рост коэффициента отражения при $\lambda = 0.63$ мкм составляет \cong 25%. Оценка показывает, что для рис. 4, б максимальная доля расплава поверхности не превышает 20%. Моменты начала процесса плавления, определенные по точке перегиба кривой теплового излучения (рис. 4, 6) и по кривой отражения (рис. $4, \delta$), совпадают при учете температурной зависимости оптических постоянных.

Глубина остаточного рельефа обычно составляла 0.1– 0.2 мкм. Профиль рельефа в поперечном направлении имел относительно плоское "дно" и резко поднимающиеся края (рис. 5).

Обсудим данные по динамике излучательной способности поверхности. Отметим, что излучательная способность твердофазного кремния выше, чем жидкофазного. Действительно, спектральный коэффициент излучения $\varepsilon(\lambda)$ определяется уравнением баланса $\varepsilon(\lambda) = 1 - \rho(\lambda) - \tau(\lambda)$, где $\rho(\lambda)$ и $\tau(\lambda)$ — спектральные коэффициенты отражения и пропускания соответственно. Для расплава кремния (металла) $\varepsilon_1(\lambda) \cong 0.2$, так как $\rho(\lambda) \cong 0.8$ и $\tau(\lambda) \cong 0$. В области фундаментального поглощения $\varepsilon_2(\lambda) \cong 0.7$, так как $\rho(\lambda) \cong 0.3$, $\tau(\lambda) = 0$ (толстая пластина) и $\varepsilon_2/\varepsilon_1 = 3.5$.

¹ Здесь и ниже для сокращения текста наряду с полным терминов "структуры с периодом *d*" используется сокращенный вариант "структуры *d*".

Рис. 1. Схема экспериментальной установки. *1* — юстировочный Не–Ne лазер; *2* — импульсный лазер на неодимовом стекле; *3* — поляризатор; *4* — зондирующий Не–Ne лазер; *S* — образец кремния; *D* — диафрагма, проектируемая линзой *L* на образец *S*; *C* — измеритель энергии импульса ИМО-2Н; $\Phi Д_1 - \Phi Z_3$ — кремниевые фотодиоды ΦZ_256 ; $\Phi_1 - \Phi_4$ — фильтры; Φ_5 — фильтр ИКС-1.

Появление излома и минимума на кривой теплового свечения есть следствие неоднородного плавления поверхности [4]. Действительно, с ростом q увеличивается доля расплава на поверхности, что и вызывает спад интенсивностив свечения. Увеличение интенсивности свечения при остывании (второй максимум на рис. 2, s) связано с кристаллизацией расплава, поскольку при этом растет ε . Сравнение динамики сигналов

Рис. 2. Форма импульса теплового свечения поверхности кремния, возникающего под действием импульса излучения неодимового лазера. *q.* кВт/см²: *a* — 113, *б* — 134, *s* — 142, *г* — 215 кВт/см².

дифракции, отражения и теплового свечения показывает, что поверхность, соответствующая первому максимуму, представляет собой сосуществование областей жидкой и твердой фаз.

Значения интенсивности кривой теплового свечения содержат информацию о доле расплава на поверхности. В предположении, что температура поверхности не превышает T_{melt} , можно оценить долю площади расплава на поверхности (S_x/S)

$$S_x/S = (1 - \varepsilon_2/\varepsilon_1)^{-1} \Delta/A, \tag{1}$$

где A — амплитуда второго максимума; $\Delta = A - B$, где B — величина сигнала в момент существования частичного расплава, например минимума кривой свечения.

Оценка по формуле (1) величины S_x/S при взятом из эксперимента значении величины Δ , соответствующей началу роста резонансных структур при низких q, дает значение $S_x/S \cong 0.26 - 0.3$.

Обсудим механизм образования структур 2λ и $\lambda/(1 - \sin \theta)$. В динамике можно выделить две стадии развития рельефа. Первая характеризуется началом локального плавления, фиксировавшегося по трем признакам: моменту появления излома в кривой теплового свечения, увеличению отражательной способности поверхности и наличию остаточного микрорельефа. Образование рельефа на этой стадии обусловлено как увеличением плотности кремния при плавлении, так и действием капиллярных сил в зонах локального расплава. По мере роста *q* размеры областей локального расплава растут, рельеф сглаживается и появляется минимум в динамике сигнала дифракции

Вторая стадия характеризуется резким ростом высоты рельефа при кристаллизации расплава в условиях его

Рис. 3. Изменение интенсивности дифракции излучения зондирующего He-Ne лазера на различных структурах. $a - 2\lambda$, $\delta - \lambda (\theta \cong 0^\circ)$, $\delta - d^-$, $\epsilon - 2d^- (\theta = 12^\circ)$; излучение неодимового лазера с q = 140 и 120 кВт/см² соответственно. Штриховая линия – сигнал теплового свечения поверхности.

продолжающегося облучения. На этой стадии (рис. 3, a) за времена ≤ 50 мкм происходит значительное перераспределение материала при совместном действии капиллярных сил и фактора разницы в плотностях расплава и твердой фазы. Это и обусловливает наблюдавшееся образование резко поднимающихся гребней в профиле рельефа. Впервые влияние последнего фактора на рост рельефа из расплава было учтено в [5].

Судя по динамике интенсивности свечения, структуры $2d^-$ образуются лишь на стадии кристаллизации жидкой фазы, поэтому механизм их образования таков же, как и для структур 2λ и d^- .

Существенное различие сигналов дифракции на структурах λ и 2λ и преобладание в остаточном рельефе последних свидетельствуют о динамической конкуренции роста структур двух типов, пространственно сосуществующих в зоне воздействия, возможная причина которой обсуждалась в [1].

Из экспериментальных данных по динамике развития рельефа, теплового сигнала и изменения отражения поверхности непосредственно следует, что формирование упорядоченного микрорельефа (λ , 2λ , d^- , $2d^-$) происходит на частично расплавленной поверхности. Поляритонная модель разрушения поверхности (интерференция поверхностных электромагнитных волн (ПЭВ) с падающей волной) [6] предполагает наличие поверхностноактивной среды, в данном случае сплошного расплава полупроводника. В настоящее время теория существования ПЭВ на частично металлизированной поверхности отсутствует. Ориентация и период структур $\lambda/(1-\sin\theta)$ находятся в рамках поляритонной модели, а для структур $\lambda, 2\lambda, 2\lambda/(1-\sin\theta)$ выходят за них.

Таким образом, в работе изучена динамика теплового свечения поверхности и рельефа, формирующегося под действием лазерного излучения в режиме неоднородного плавления поверхности. Интерпретирована динамика поведения сигнала теплового свечения поверхности. Показано, что образование структур 2λ , $\lambda/(1 - \sin \theta)$, $2\lambda/(1-\sin\theta)$ происходит в основном на стадии кристаллизации расплава и связано с действием капиллярных сил и фактора изменения плотности материала при фазовом переходе "плавление". Обнаружено образование преимущественно динамических структур λ . Сделан вывод о том, что образование периодического микрорельефа происходит на частично расплавленной поверхности. Детальное объяснение причин формирования рельефа 2λ и 3λ и особенностей динамики рельефа λ требует более подробного изучения.

Рис. 4. Изменение коэффициента отражения (*a*) и теплового свечения поверхности (δ) под действием импульса лазерного излучения (*e*) при *q* = 130 кВт/см² во взаимной временной привязки.

Рис. 5. Профиль рельефа поверхности кремния, полученный при использовании интерференционного микроскопа $(q = 140 \text{ kBr/cm}^2, \text{структура } 2\lambda).$

Данная работа частично поддержана грантами № RNS300 и R3W300 Международного научного фонда и правительства России и грантом № 94-02-05802 Российского фонда фундаментальных исследований.

Список литературы

- Gashkov O.P., Libenson M.N., Makin V.S. et al. // Proc. SPIE. 1993. Vol. 1856. P. 34–43.
- [2] *Гашков О.П., Либенсон М.Н., Макин В.С.* и др. // Письма в ЖТФ. 1992. Т. 18. Вып. 10. С. 32–38.
- [3] Guosheng Z., Fauchet P.M., Siegman A.E. // Phys. Rev. B. 1982. Vol. 26. N 10. P. 5366–5381.
- [4] Bosch M.A., Lemons R.A. // Phys. Rev. Lett. 1981. Vol. 47.
 P. 1151–1153.
- [5] Enmnony D.C., Phillips N.J., Toger J.H. // J. Phys. D. 1975. Vol. 8. N 13. P. 1472–1479.
- [6] Коченгина М.Г., Либенсон М.Н., Макин В.С. и др. // Тез. докл. V Всесоюз, конф. по нерезонансному взаимодействию оптического излучения с веществом. М., 1981. С. 311–312.