Оптимизация параметров магнитной системы из двух катушек для создания однородного поля при питании от сети и конденсаторной батареи

© В.В. Филатов

Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова, 189631 Санкт-Петербург, Россия

(Поступило в Редакцию 9 сентября 1995 г. В окончательной редакции 18 декабря 1995 г.)

Для проведения физических экспериментов часто требуется создать в некоторой области кратковременное магнитное поле заданной однородности. При этом для импульсного питания магнитной системы используются различные нокопители энергии, в частности конденсаторные батареи. Наиболее простую конфигурацию такой магнитной системы образуют две одинаковые соосные электромагнитные катушки. Приводятся результаты оптимизации параметров такой системы с учетом требований на однородность поля.

Введение

Магнитное поле высокой однородности для проведения физических экспериментов получают, как правило, в длинных сплошных соленоидах. Однако в ряде случаев экспериментальный канал нужно разместить поперек магнитного поля. При этом электромагнитная система содержит две катушки, раздвинутые на размер канала. Такая конструкция магнитной системы была использована на стендах "Цефей", "Вика" и "Спрут" [1-3] для исследования пучков заряженных частиц и жидкометаллических пленок, а также в фотоэлектронном динамическом спектрометре [4] для диагностики плазмы. Уровень магнитного поля в этих установках достигает 6 Тл, а время проведения эксперимента не превышает 10 мс, поэтому целесообразен импульсный режим работы катушек, в частности, от конденсаторной батареи. Однако в этом случае магнитное поле неоднородно не только в пространстве, но и во времени.

Для системы из двух соосных одинаковых катушек с малым поперечным сечением (катушек Гельмгольца) существуют оптимальные размеры, которые могут быть рассчитаны аналитическими методами, например при использовании полиномов Лежандра [5]. Но при указанном уровне магнитного поля катушки имеют размеры поперечного сечения, сравнимые с размерами системы, и для ее оптимизации требуются численные методы.

Данная работа посвящена оптимизации параметров магнитной системы, предназначенной для получения однородного магнитного поля, работающего от сети либо от конденсаторной батареи и состоящей из двух одинаковых соосных катушек, которые включены последовательно и имеют прямоугольное сечение, равные токи одного направления и постоянную по сечению плотность тока.

Эффективность магнитной системы при питании от сети

Геометрическая эффективность магнитной системы G (коэффициент Фабри) [6,7], характеризующая мощность резистивных потерь P при заданных значениях внутрен-

него радиуса $r_{\rm in}$ и магнитной индукции B_c в центре системы, определяется выражением

$$G = B_c \sqrt{\frac{\rho r_{\rm in}}{\lambda P}},$$

где ρ — удельное электрическое сопротивление проводника, λ — коэффициент заполнения сечения катушек проводником.

Значения *ρ* и *λ* считаем известными для используемого материала проводника и выбранной толщины электрической изоляции витков.

Геометрическая эффективность G является функцией относительных размеров системы (рис. 1) $\alpha = r_{out}/r_{in}$; $\beta = b/(2r_{in})$; $\delta = \Delta/(2r_{in})$ и равна

$$G = \frac{\mu_0 Y}{2\sqrt{\pi\beta \left(\alpha^2 - 1\right)}},\tag{1}$$

где

$$Y = (2\beta + \delta) \ln \frac{\alpha + \sqrt{\alpha^2 + (2\beta + \delta)^2}}{1 + \sqrt{1 + (2\beta + \delta)^2}} - \delta \ln \frac{\alpha + \sqrt{\alpha^2 + \delta^2}}{1 + \sqrt{1 + \delta^2}},$$
(2)

 $\mu_0 = 4\pi 10^{-7}$ Гн/м — абсолютная магнитная проницаемость.

Рис. 1. Геометрия электромагнитной системы.

Рис. 2. Зависимость относительных оптимальных размеров катушек α_0 и β_0 от расстояния δ между катушками при питании от сети.

При этом осевое поле в центре системы

$$B_c = \frac{\mu_0 I n}{r_{\rm in}} \frac{Y}{2\beta \left(\alpha - 1\right)},\tag{3}$$

где *n* — число витков в каждой катушке, *I* — ток в витке.

Для каждого значения δ существуют оптимальные α_0 и β_0 , при которых геометрическая эффективность имеет максимум G_0 . Зависимости α_0 и β_0 от δ показаны на рис. 2. При $\delta = 0$ оптимум соответствует с учетом различия в обозначении β известному аналитическому решению $G_{om} = 0.179 \cdot 10^{-6}$ Гн/м при $\alpha_{om} = 3$, $\beta_{om} = 1$ [6]. Зависимость G_0 от δ приближенно может быть описана выражением $G_0 = G_{om}/(1 + \delta)^{3/4}$.

Неоднородность магнитного поля вдоль оси

Простейшей магнитной системой для получения однородного поля является система двух одинаковых катушек Гельмгольца [5]. Если поперечное сечение катушек мало́ $(\beta \ll 1 \text{ и } \alpha - 1 \ll 1)$, то поле максимально однородно при $\delta = (0.5 - \beta)$ и $\beta = 0.431(\alpha - 1)$. В том случае, если начало координат расположено в центре системы и $(r^2 + z^2) < r_{in}^2$, относительная неоднородность осевого поля в точке (r, z) равна

$$\varepsilon = \frac{B_c - B(r, z)}{B_c} = q \left[1 - 0.857(1+\theta) + 0.0857(1+\theta)^2 \right],$$

где $q = (3\gamma)^4 / [(\alpha + 1)^4 - 0.067(\alpha^2 - 1)^2], \ \theta = (r/z)^2,$ $\gamma = z/r_{\rm in}.$

Отметим, что на оси системы $\varepsilon \approx \gamma^4$ (при $\gamma < 1$).

Для катушек с большим поперечным сечением неоднородность магнитного поля рассчитывается численными методами [8]. Граничные значения неоднородности $\varepsilon_L = 1 - B_{\min}/B_c$ и $\varepsilon_H = B_{\max}/B_c - 1$, а также полная неоднородность $\varepsilon_F = \varepsilon_L + \varepsilon_H$ в заданной области зависят только от соотношения размеров этой области и магнитной системы. На рис. 3, *а* показана зависимость от α параметра β_s , при котором неоднородность поля ε_F минимальна на отрезке оси длиной *s* в центре системы, для различных значений геометрических параметров δ и $\gamma_s = s/(2r_{\rm in})$. Значения пространственной неоднородности магнитного поля $\varepsilon_s = \min \varepsilon_F$, соответствующие β_s , представлены на рис. 3, δ .

Отметим, что уровень неоднородности поля ε_F вблизи кривой $\beta_s(\alpha)$ весьма чувствителен к соотношению параметров α и β . При $\delta > 0.8$ и $\delta > \gamma_s$ наименьшую неоднородность дают катушки в виде тонких "шайб" большого диаметра, однако в этом случае уровень неоднородности поля существено выше уровня, указанного на рис. 3, δ .

Если для непрерывного режима работы от сети задана предельная неоднородность магнитного поля ε_b на отрезке s, то при фиксированных $r_{\rm in}$ и Δ значения α и β выбирают при условии $\varepsilon_F(\alpha,\beta) \leqslant \varepsilon_b$ как можно ближе к значениям α_0 и β_0 , оптимальным по критерию максимума геометрической эффективности G. Процедура оптимизации в этом случае выглядит следующим образом. Для заданных ε_b , *s* и минимально возможном значении Δ определяют γ_s , δ и рассчитывают уровень неоднородности для α_0 и β_0 , соответствующих δ (рис. 2). Если он больше ε_b , то в области, ограниченной линиями $\beta = \beta_s(\alpha)$ (рис. 3, *a*), $\beta = \beta_0$ и $\alpha = \alpha_0$ по формуле (1) строят зависимость $G(\alpha, \beta)$ вдоль изолинии $\varepsilon_F(\alpha,\beta) = \varepsilon_b$. Параметры α и β принимают в соответствии с максимальным значением G. При $\gamma_s > 1$ значение δ целесообразно увеличивать и процедуру поиска повторять, если рост б приводит к снижению неоднородности поля ε_F . Определяя оптимальные значения α , β , δ и G для каждого фиксированного радиуса $r_{\rm in}$, строят зависимость $(G/\sqrt{r_{in}})$ от r_{in} и находят в точке максимума оптимальное значение r_{in}.

Особенности работы магнитной системы от конденсаторной батареи

Использование конденсаторной батареи для питания магнитной системы, работающей в режиме кратковременных импульсов, позволяет упростить систему питания и снизить пиковые нагрузки в сети. Рассмотрим процесс разряда батареи на последовательно соединенные катушки с учетом того, что в случае многовитковых катушек, которые обычно используются для создания однородного поля, индуктивностью самой батареи, а также электрическим сопротивлением и индуктивностью соединительных проводов можно пренебречь. Влияние этих параметров на процесс разряда в одиночной катушке с малым числом витков исследовано в работе [9].

Электрическое сопротивление контура равно

$$R = \frac{\pi \rho \, n^2}{\lambda r_{\rm in}} \, \frac{\alpha + 1}{\beta(\alpha - 1)}.\tag{4}$$

Полная индуктивность магнитной системы (рис. 1), рассчитанная методом четырех прямоугольников [10], составляет

$$L = \frac{\mu_0 r_{\rm in} n^2}{2} (\alpha + 1) \Phi,$$
 (5)

Рис. 3. Зависимости оптимальной для создания однородного магнитного поля ширины катушек $\beta_s(a)$ и наименьший пространственной неоднородности поля ε_s на оси при $\beta = \beta_s(\delta)$ от параметра α . δ и γ_s : $1 - \delta = \gamma_s = 0.25$; $2 - \delta = \gamma_s = 0.5$; $3 - \delta = \gamma_s = 0.75$; $4 - \delta = 0.25$, $\gamma_s = 0.5$; $5 - \delta = 0.75$, $\gamma_s = 0.5$; $6 - \delta = 0.5$, $\gamma_s = 0.25$; $7 - \delta = 0.5$, $\gamma_s = 1$.

где

$$\begin{split} \Phi &= 2F(\beta) + \left(\frac{\delta}{\beta}\right)^2 F(\delta) \\ &+ \left(2 + \frac{\delta}{\beta}\right)^2 F(\beta_2) - 2\left(1 + \frac{\delta}{\beta}\right)^2 F(\beta_1), \\ \beta_1 &= \beta + \delta; \qquad \beta_2 = 2\beta + \delta, \\ F(y) &= \ln \frac{4(\alpha + 1)}{2y + \alpha - 1} - \frac{1}{2} \\ &+ \frac{12y^2 + (\alpha - 1)^2}{24(\alpha + 1)^2} \ln \frac{4(\alpha + 1)}{\sqrt{4y^2 + (\alpha - 1)^2}} + f(y), \\ f(y) &= 0.167 \left(\frac{y}{\alpha + 1}\right)^2 \\ &\times \left[\left(\frac{\alpha - 1}{y}\right)^2 + 0.1\frac{\alpha - 1}{y} + 0.72 \right] \text{ при } \alpha < 2y + 1 \\ f(y) &= 0.135 \left(\frac{\alpha - 1}{\alpha + 1}\right)^2 \left[\frac{y}{\alpha - 1} + 1\right] \quad \text{при } \alpha > 2y + 1 \end{split}$$

$$f(y) = 0.135 \left(\frac{\alpha - 1}{\alpha + 1}\right) \left[\frac{y}{\alpha - 1} + 1\right] \quad \text{при} \quad \alpha > 2y + 1.$$
(6)

Приведенные выражения учитывают также взаимную индуктивность катушек и дают погрешность расчета L менее 2% в диапазоне $\alpha < 4$ и $(2\beta + \delta) < 1.5$. В другом диапазоне параметров α и β для расчета L можно использовать зависимости из работ [7,10].

Процесс в цепи имеет характер электрических колебаний (осцилляций), если емкость батареи $C < 1/(k^2L)$, где коэффициент затухания колебаний с учетом (4), (5) составляет

$$k = \frac{R}{2L} = \frac{\pi\rho}{\mu_0 \lambda r_{\rm in}^2 \beta(\alpha - 1) \Phi},\tag{7}$$

а Φ определяется выражением (6).

Журнал технической физики, 1997, том 67, № 4

Отметим, что значение k не зависит от числа витков nи определяется только геометрией системы. При фиксированном радиусе r_{in} оно растет с уменьшением сечения катушек и медленно снижается с ростом расстояния между ними.

Ниже будет рассмотрен только режим осцилляций, в котором потери энергии меньше, чем в апериодическом режиме.

Продолжительность эксперимента, как правило, ограничена полупериодом разряда, равным $T/2 = \pi/\omega$, где циклическая частота колебаний

$$\omega = \sqrt{\frac{1}{LC} - k^2}.$$

Основные характеристики процесса определяет параметр, названный в [11] мерой затухания,

$$\chi = \frac{k}{\omega} = \left[\frac{2}{\pi^2 \eta} \frac{\beta^2 (\alpha - 1)^2 \Phi}{\alpha + 1} - 1\right]^{-1/2}, \qquad (8)$$

где

$$\eta = \frac{Cn^2\rho^2}{\mu_0 \,\lambda^2 \,r_{\rm in}^3}.\tag{9}$$

Значение χ зависит от геометрии (α , β , δ) и комплексного параметра η . Зависимость тока цепи от времени *t* имеет вид

$$I = I_a \sqrt{1 + \chi^2} \exp(-kt) \left[\sin(\omega t - \varphi_0) + \chi \cos(\omega t - \varphi_0) \right],$$

где $I_a = CV_0\omega$ — амплитуда тока при отсутствии потерь энергии (затухания), V_0 — начальное напряжение батареи, $\varphi_0 = \arctan \chi$ — начальная фаза.

Момент t_m достижения максимального тока при наличии резистивных потерь в контуре соответствует параметру

$$\xi_m = kt_m = \chi \left(\operatorname{arctg} \chi + \operatorname{arctg} \frac{1 - \chi^2}{2\chi} \right),$$
 (10)

Рис. 4. Зависимости наибольшей $G_{E_0}(a)$ и соответствующих оптимальных размеров катушек α_E и $\beta_E(\delta, s)$ от параметров δ и η . η : I = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1.

который зависит только от χ . При этом максимальный полный ток в каждой катушке

$$(I_m n) = cV_0 \,\omega n \sqrt{1 + \chi^2} \exp\left(-\xi_m\right) = \sqrt{\frac{2E}{L_1}} \exp\left(-\xi_m\right),$$
(11)

где $E = CV_0/2$ — начальная запасенная энергия батареи конденсаторов, $L_1 = L/n^2$ — индуктивность системы из двух одновитковых катушек.

Максимальное магнитное поле в центре системы B_{cm} рассчитывается по формуле (3) при $I = I_m$. Для заданной геометрии и при заданном значении E максимальное поле растет, как видно из соотношений (8)–(10), при снижении меры затухания χ , т.е. при снижении η . Следовательно, в тех случаях, когда можно пренебречь индуктивностью конденсаторной батареи, а также электрическим сопротивлением и индуктивностью соединительных проводов, максимум B_{cm} при заданной запасенной энергии E соответствует одновитковым катушкам и высоковольтной конденсаторной батарее с малой емкостью. Параметр χ определяет по существу максимальную энергию магнитного поля системы

$$E_m = \frac{L_1(I_m n)^2}{2} = E \exp(-2\xi_m)$$

и тепловые потери в цепи к моменту времени t_m

$$E_T = E\left[1 - \frac{1 + 5\chi^2}{1 + \chi^2} \exp\left(-2\xi_m\right)\right].$$
 (12)

В случае слабого затухания ($\chi \to 0$, $\xi_m \to 0$) разряд батареи I(t) идет практически по синусоиде и $E_m \approx E$. Параметры α_0 и β_0 (рис. 2), рассчитанные по критерию максимума геометрической эффективности G, определяют наименьшую мощность омических потерь (скорость потери энергии) и оптимальны для систем с непрерывным режимом работы от сети. Для импульсных источников и накопителей энергии, например для конденсаторной батареи, следует использовать иной критерий. Назовем магнитной эффективностью разряда параметр

$$G_E = B_{cm} \sqrt{\frac{r_{\rm in}^3}{2\mu_0 E}}.$$

По существу G_E^2 — это отношение максимальной энергии магнитного поля B_{cm} в центральном объеме r_{in}^3 к запасенной энергии *E*. Для рассматриваемой системы из двух катушек (рис. 1) магнитная эффективность разряда равна

$$G_E = \frac{Y}{\beta(\alpha - 1)\sqrt{2(\alpha + 1)\Phi}} \exp\left(-\xi_m\right), \qquad (13)$$

где Y определяется выражением (2), Φ — выражением (6).

В выражении (13) сомножитель $\exp(-\xi_m)$ характеризует эффективность преобразования электрической энергии в магнитную, а другой сомножитель — эффективность концентрации магнитной энергии. Полная потеря энергии E_T к моменту времени t_m , определенная формулой (12), зависит от длительности импульса, которая, согласно (8), (10), является функцией χ , т.е. параметра η . Зависимости максимума G_{E_0} , а также соответствующих оптимальных значений α_E и β_E от параметров δ и η представлены на рис. 4, *a*, *s*. Значения α_E и β_E соответственно меньше α_0 и β_0 (рис. 2) при том же δ , поскольку уменьшение сечения катушек приводит к росту плотности тока в случае, когда полный ток, как видно из (11), ограничен запасенной энергией батареи.

Ограничения на параметры магнитной системы

При импульсном режиме работы магнитной системы существует ряд технических ограничений на длительность разряда и параметры катушек.

 Продолжительность эксперимента в однородном поле должна быть существенно меньше длительности импульса, но существенно больше времени срабатывания коммутирующей аппаратуры.

2) Импульсный разряд сопровождается скин-эффектом в проводнике, вызывающим нелинейный рост электрического сопротивления, значительный нагрев проводника, перераспределение плотности тока и нарушение однородности поля. Поэтому наибольший размер h сечения

Рис. 5. Зависимость тока разряда *I* от времени *t* при питании от конденсаторной батареи.

витка, определяющий минимально возможное число витков $n_{\min} = 2\lambda\beta (\alpha - 1)r_{in}^2/h^2$, должен быть не более 30 % от условной толщины скин-слоя $h_{sc} = \sqrt{2\rho/(\mu_0\omega)}$. Это одна из причин, по которым для получения однородного поля в импульсном режиме не используются дисковые конструкции (катушки Биттера).

3) Размеры сечения витка ограничены технологическими возможностями намотки катушки на минимальном радиусе *r*_{in}.

4) Максимальный ток в витке I_m и число витков n выбираются так, чтобы резистивные потери в подводящих шинах были незначительны.

5) При наличии в магнитной системе замкнутых проводящих конструкций (стальных силовых каркасов, вакуумных кожухов и др.) в них наводятся вихревые токи, что приводит к дополнительным потерям энергии, снижению поля и росту его неоднородности. Эти эффекты ослабляются при уменьшении циклической частоты ω , т. е. для длительных импульсов.

6) Сечение катушек должно быть достаточно большим для того, чтобы к моменту времени t_m их нагрев на температуру

$$\Delta\Theta = E_T / \left[4\pi \lambda \rho_d c_p r_{\rm in}^3 \beta \left(\alpha^2 - 1 \right) \right]$$

 $(c_p$ — удельная теплоемкость, ρ_d — плотность проводника) не приводил к заметному росту электрического сопротивления *R*, т.е. к нерасчетному режиму разряда.

 Сечение катушек должно быть достаточно большим по условию их прочности при воздействии окружных растягивающих и осевых сжимающих импульсных электромагнитных нагрузок.

Все эти ограничения требуют, как правило, применения многовитковых катушек, для которых характерно заметное затухание импульсов. Кроме того, рост числа витков сопровождается увеличением количества изоляции и снижением коэффициента заполнения λ , т.е. дополнительным снижением эффективности катушек. Таким образом, если энергия конденсаторной батареи задана, то ее емкость и число витков в катушках, т.е., значение η , определенное выражением (9), нужно выбирать минимально возможными для заданного предельного уровня неоднородности поля при соблюдении указанных ограничений.

Неоднородность магнитного поля во времени

В импульсном режиме работы магнитной системы имеет место неоднородность поля во времени. Ее уровень определяется необходимой продолжительностью эксперимента $\tau < T/2 = \pi/\omega$ (рис. 5) вблизи момента t_m максимума тока. Момент начала эксперимента $t_1 < t_m$ соответствует условию $I(t_1) = I(t_1 + \tau) = I_{\tau}$ и в общем случае рассчитывается численно из уравнения

$$(\sin\psi_1 + \chi\cos\psi_1)\exp(\xi_\tau) = \sin\psi_2 + \chi\cos\psi_2,$$

где $\xi_{\tau} = k\tau$, $\psi_1 = \xi_{\tau} / \chi t_1^* - \varphi_0$, $\psi_2 = \xi_{\tau} / \chi (t_1^* + 1) - \varphi_0$, $t_1^* = t_1 / \tau$.

При этом неоднородность поля во времени

$$\varepsilon_{\tau} = 1 - I_{\tau}/I_m = 1 - \exp\left(\xi_m - \xi_{\tau}t_1^*\right) \left[\sin\psi_1 + \chi\cos\psi_1\right]$$

определяется только параметрами χ и ξ_{τ} (рис. 6). В случае слабого затухания ($\chi \to 0, \, \xi_{\tau} \to 0$)

$$t_m \approx T/4 = \pi/(2\omega), \quad t_1 \approx t_m - \tau/2, \quad \varepsilon_\tau \approx 1 - \sin(\omega t_1).$$

Общая неоднородность магнитного поля включает пространственную (рис. 3) и временную (рис. 6) составляющие $\varepsilon_1 = \varepsilon_F + \varepsilon_{\tau}$.

Если для импульсного режима работы от конденсаторной батареи задан предельный уровень общей неоднородности магнитного поля ε_b на определенном отрезке *s* в течение промежутка времени τ , то при фиксированных $r_{\rm in}$ и Δ параметры α и β выбираются как можно ближе к оптимальным значениям по критерию максимума магнитной эффективности разряда G_E .

Процедура оптимизации в этом случае выглядит следующим образом. Для заданных ε_b , s, τ и минимально возможном значении Δ определяют γ_s и δ , а затем поиск проводят при варьировании параметра α . При этом для каждого значения α находят β_s , ε_s (рис. 3) и

Рис. 6. Зависимость неоднородности поля во времени ε_{τ} от параметров χ и ξ_{τ} . ε_{τ} , %: 1 - 0.7, 2 - 2, 3 - 5, 4 - 10, 5 - 20.

 $\varepsilon_{\tau} = \varepsilon_b - \varepsilon_s$, рассчитывают по формуле (7) параметр k, соответствующий δ , α и β_s , а также параметр $\xi_{\tau} = k\tau$, а для полученных ε_{τ} и ξ_{τ} из рис. 6 находят меру затухания χ и по формулам (10), (13) определяют G_E . Таким образом процедуру повторяют и получают зависимость $G_E(\alpha)$. Для $\gamma_s > 1$ исследуют также возможность повышения G_E при увеличении δ . Параметры α , β и δ принимают в соответствии с максимальным значением G_E . Определяя оптимальные значения α , β , δ и G_E для каждого фиксированного радиуса $r_{\rm in}$, строят зависимость $(G_E/\sqrt{r_{\rm in}^3})$ от $r_{\rm in}$ и находят в точке максимума оптимальное значение $r_{\rm in}$. Параметр Cn^2 рассчитывают из соотношений (8), (9).

Выводы

Задачи оптимизации магнитных систем, работающих от сети и от конденсаторной батареи, отличаются друг от друга. Для непрерывного режима работы от сети критерием оптимальности служит максимум функции $(G/\sqrt{r_{\rm in}})$, а значение геометрической эффективности *G* для системы из двух раздвинутых катушек рассчитывается по формуле (1). Оптимальные параметры катушки в такой системе в общем случае не совпадают с оптимальными параметрами одиночной катушки, приведенными в [5,6].

Для оптимизации магнитной системы, работающей в импульсном режиме от конденсаторной батареи, следует использовать новый параметр G_E , названный магнитной эффективностью разряда. При этом критерием оптимальности служит максимум функции $(G_E/\sqrt{r_{in}^3})$. Для системы из двух раздвинутых катушек значение G_E определяется выражением (13).

Если задан предельный уровень неоднородности магнитного поля в определенной области, то поиск оптимальных параметров магнитной системы проводится по разработанным алгоритмам с использованием приведенных в работе формул и графиков. Методики оптимизации различны для режимов питания катушек от сети и от конденсаторной батареи.

При оптимизации следует учитывать жесткие ограничения на параметры катушек, связанные с импульсным режимом работы.

На основе описанного алгоритма оптимизации создан компьютерный код HELM, с помощью которого автором рассчитаны оптимальные параметры магнитных систем исследовательских установок "Цефей". "Вика" и "Спрут" [1–3].

В данной работе рассмотрен случай, когда плотность тока равномерна по сечению катушек. Оптимальное распределение плотности тока и соответствующая эффективность катушек, смещенных по оси от центра системы, приводятся в работе [12].

Список литературы

- [1] Kozhevin V.M., Litunovsky V.N., Ljublin B.V. et al. // Fusion Eng. and Design. 1995. Vol. 28. P. 157–161.
- [2] Drozdov A.A., Kuznetsov V.E., Ljublin B.V. et al. // Plasma Devices and Operations. 1995. Vol. 4. N 1. P. 53–82.
- [3] Gagen-Torn V.K., Kirillov I., Komarov V.L. et al. // Proc. of the 18th Symp. on Fusion Technology (SOFT). Karlsruhe, 1994. P. B-007.
- [4] Готт Ю.В., Шурыгин В.А. Фотоэлектронный метод исследования рентгеновского излучения плазмы установки ITER. Препринт ИАЭ. № 5287/8. 1991. 40 с.
- [5] *Карасик В.Р.* Физика и техника сильных магнитных полей. М.: Наука, 1964. 347 с.
- [6] Монтгомери Д. Получение сильных магнитных полей с помощью соленоидов. М.: Мир, 1971. 359 с.
- [7] Паркинсон Д., Малхолл Б. Получение сильных магнитных полей. М.: Атомиздат, 1971. 199 с.
- [8] Алиевский Б.Л., Орлов В.Л. Расчет параметров магнитных полей осесимметричных катушек. М.: Энергоатомиздат, 1983. 112 с.
- [9] Champion K.S.W. // Proc. of the Phys. Soc. 1950. Section B. Vol. 63. N 10. P. 795–806.
- [10] Калантаров П.Л., Цейтлин Л.А. Расчет индуктивностей. Л.: Энергоатомиздат, 1986. 488 с.
- [11] Парселл Э. Электричество и магнетизм. М.: Наука, 1983. 416 с.
- [12] Filatov V.V. // Proc. of the Intern. Conf. on Open Plasma Confinement Systems for Fusion. Singapore: World Scientific, 1994. P. 561–577.