05;12

Модификация некоторых физико-химических свойств высокотемпературной сверхпроводящей иттриевой керамики при легировании ее золотом

© Т.В. Крачино, И.Н. Зимкин, М.А. Митцев, Ю.П. Степанов

Физико-технический институт им. А.Ф.Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 9 октября 1995 г.)

Исследовано влияние добавки золота (5 и 10 ат.%) на параметры решетки, температуру сверхпроводящего перехода и диамагнитную восприимчивость высокотемпературной сверхпроводящей керамики YBa₂Cu₃O_{7-δ}. Изучено также влияние золота на кинетику выделения слабосвязанного кислорода при нагреве керамики в вакууме. Показано, что легирование керамики золотом вызывает одноосное расширение решетки материала, существенное уменьшение диамагнитной восприимчивости, немонотонное изменение кинетических параметров выделения кислорода при почти неизменной температуре сверхпроводящего перехода.

Введение

Создание композиционных материалов на основе сверхпроводящей керамики YBa₂Cu₃O_{7-δ} (УВСО) и благородных металлов золота и серебра представляет значительный интерес. Это обусловлено тем, что легирование УВСО этими металлами существенно улучшает пластичность керамики, уменьшает сопротивление и пористость образцов, мало влияя при этом на их сверхпроводящие свойства. Однако если работ, посвященных изучению различных свойств композитов УВСО-Ад, выполнено достаточно много (см., например, обзорные работы [1,2]), то исследованию влияния золота на свойства керамики уделялось недостаточное внимание [3,4]. В частности, не изучено поведение материала УВСО-Аи при нагревании его в вакууме. Между тем такие эксперименты могут дать полезные сведения как для технологии создания модифицированных сверхпроводящих материалов, так и для понимания процессов, протекающих в кислородной подрешетке этих веществ, формирующихся при высоких температурах.

В настоящей работе описаны результаты исследования некоторых физико-химических свойств керамики УВСО, легированной золотом. Изучено влияние содержания золота в керамике на параметры кристаллической решетки, температуру сверхпроводящего перехода, диамагнитную восприимчивость и кинетику выделения кислорода при нагреве керамики в вакууме.

Приготовление образцов и методика экспериментов

Для проведения эксперимента были изготовлены образцы нескольких составов. Синтез керамики $YBa_2Cu_{3(1-x)}Au_{3x}O_{7-\delta} c x = 0, 0.5, 0.1$ и $\delta = 0.07$ осуществлялся золь-гель методом с применением этиленгликоля в качестве гелеобразователя [5]. Добавки золота производились в исходные растворы нитратов иттрия, бария и меди в форме хлорида. Керамические образцы размером $7 \times 7 \times 2$ мм спекались в атмосфере кислорода при температуре 940° С в течение 2 ч, затем отжигались 20 ч при температуре 910° С и 17 ч охлаждались до 20° С.

Рентгенографический анализ материала образцов проводился на дифрактометре ДРОН-2.0 с использованием Fe K_{α} -излучения. Температура сверхпроводящего перехода T_c определялась индуктивным методом по началу резкого изменения частоты автодинного генератора [6]. На этой же установке были проведены измерения диамагнитной восприимчивости образцов керамики.

Метод исследования термического выделения кислорода из высокотемпературной сверхпроводящей керамики и высоковакуумная установка, предназначенная для проведения таких экспериментов, описаны в [7,8]. Установка была оснащена ожеспектрометром на основе энергоанализатора типа цилиндрическое зеркало и монопольным массспектрометром. В ходе экспериментов измерялись зависимости парциального давления кислорода p_{Ω_2} от температуры образцов как при возрастании ее, так и при снижении. Давление кислорода, выделявшегося из данного образца при данной температуре, не зависело от времени и было хорошо воспроизводимо от опыта к опыту. Такая стационарность процесса достигалась за счет того, что работа проводилась со слабыми потоками, и выделение кислорода практически ее меняло его содержание в керамике [8,9].

Контроль чистоты поверхности керамики осуществлялся с помощью метода оже-спектроскопии. Было установлено, что основными примесями у исследованных образцов были углерод и хлор, поверхностная концентрация которых не превышала примерно 10 и 5 ат.% соответственно. В процессе измерений образцы нагревались до 350°С. Согласно нашим исследованиям [7,8], такой нагрев позволяет полностью удалить углерод из керамики УВСО. Это же подтверждают и результаты настоящей работы: термический нагрев в вакууме позволил снизить содержание углерода более чем в 10 раз. Наличие же небольшой примеси углерода, как показано в наших работах [8,9], не влияет на кинетику выделения слабосвязанного кислорода. Скорее всего, это обусловлено тем, что углерод в керамике располагается практически только по границам зерен. Что касается примеси хлора, то прогрев образцов до 350°С почти не уменьшал его концентрацию на поверхности. Это неудивительно, так как для очистки керамики УВСО от примеси хлора требуется прогрев ее в вакууме при температуре около 800°С [10].

Результаты измерений и их обсуждение

Влияние содержания золота в керамике УВСО на параметры решетки представлено в табл. 1. Как видно, введение золота в УВСО вызывает довольно значительное увеличение постоянной решетки *с* и небольшое расширение решетки в направлении *b*. Величина постоянной *a* остается практически неизменной. Эти данные хорошо согласуются с результатами работы [3]. Следует отметить, что на дифрактограммах образцов, содержавших добавку золота, наблюдались дополнительные рефлексы, число и расположение которых не менялось, а интенсивность росла при переходе от x = 0.05 к 0.1. Скорее всего, добавка золота приводит к образованию примесной фазы, идентифицировать которую, к сожалению, не удалось.

В табл. 1 приведена также зависимость T_c от содержания золота в керамике. Из данных таблицы следует, что температура сверхпроводящего перехода керамики УВСО при добавлении в нее золота изменяется слабо.

Было изучено влияние добавки золота на величину диамагнитной восприимчивости иттриевой керамики. Диамагнитная восприимчивость была измерена

Таблица 1. Постоянные решетки a, b, c (Å) и температура T_c (K) для керамики УВСО с различным содержанием золота x

x	0	0.05	0.1	Δ
a, \mathring{A} b, \mathring{A} c, \mathring{A} T_{c}, K	3.824 3.891 11.667 90	3.822 3.899 11.705 90	3.821 3.901 11.734 88	$\pm 0.002 \\ \pm 0.002 \\ \pm 0.006 \\ 1.5$

П р и м е ч а н и е. Δ — точность определения постоянных решетки и ширина сверхпроводящего перехода.

Зависимость от температуры давления кислорода, выделяющегося из керамики $YBa_2Cu_{3(1-x)}Au_{3x}O_{6.93}$ с различным содержанием золота. x: 1 - 0, 2 - 0.05, 3 - 0.1.

при T = 30 К. Оказалось, что величина магнитной восприимчивости материала при содержании золота 5 ат.% была в 1.2 раза, а при 10 ат.% золота в 6 раз меньше, чем у исходной керамики УВСО без добавки золота. Такое изменение магнитной восприимчивости может быть обусловлено уменьшением длины когерентности и соответственно уменьшением объема сверхпроводящей фазы в керамике УВСО при введении добавок [11], в нашем случае золота. Другой причиной изменения магнитной восприимчивости, возможно, является происходящее при легировании золотом изменение микроструктуры керамики и состава межгранульного вещества [12]. Во всяком случае наблюдаемое уменьшение магнитной восприимчивости может оказать влияние на величины критического тока и критических магнитных полей.

Влияние содержания золота на термическое выделение кислорода из керамики иллюстрируется рисунком. На нем представлены зависимости парциального давления кислорода от температуры образца $\lg p_{O_2} = f(1/T)$ для керамики YBa₂Cu₃O_{6.93} (кривая 1) и композитов с добавкой золота 5 (кривая 2) и 10 ат.% (кривая 3). Из рисунка видно, что экспериментальные результаты хорошо аппроксимируются прямыми линиями.

Таблица 2. Эффективная энергия активации E (эВ) и предэкспоненциальный множитель A (с⁻¹) (уравнение (2)) для керамики УВСО с различным содержанием золота x

x	E, эВ	A, c^{-1}
$0 \\ 0.05 \\ 0.1$	2.10 1.78 2.05	$\begin{array}{c} 3.86 \cdot 10^{31} \\ 1.13 \cdot 10^{29} \\ 9.4 \cdot 10^{30} \end{array}$

В стационарных условиях поток кислорода ν из образца связан с давлением *p* соотношением

$$\nu = Sp,\tag{1}$$

где S — скорость откачки кислорода, в принципе зависящая от давления p.

Однако если значение фонового давления кислорода p_0 в вакуумной камере много меньше давления p, то такая зависимость отсутствует. В использованной в настоящей работе вакуумной установке соотношение $p_0 \ll p$ всегда выполнялось с достаточной степенью точности, что позволило считать скорость откачки не зависящей от давления. Учитывая линейность экспериментальных зависимостей $\lg p_{O_2} = f(1/T)$, поток кислорода ν может быть записан в виде

$$\nu = A \exp(-E/kT). \tag{2}$$

Значения параметров A и E уравнения (2), полученные для керамики УВСО с различным содержанием золота, представлены в табл. 2. Как видно, при введении золота в керамику УВСО кинетические параметры процесса выделения кислорода претерпевают немонотонное изменение.

Для керамики $YBa_2Cu_3O_{6.93}$ без добавок золота величины E и A хорошо совпадают со значениями, полученными в нашей работе [8]. Следует отметить, что образцы состава $YBa_2Cu_3O_{6.93}$, исследованные в [8], не содержали примеси хлора. Поэтому хорошее совпадение величин E и A для керамики одинакового состава в обеих работах позволяет сделать вывод о том, что небольшая примесь хлора не влияет на процесс термического выделения слабосвязанного кислорода.

Нами ранее было показано [8], что при стационарном выделении кислорода величина эффективной энергии E в формуле (2) равна сумме величин $E = \Delta E + E_1$, где ΔE — энергия перехода атома кислорода из положения в цепочке O(1) в незанятое состояние O(5), а E_1 — энергия активации перехода атома кислорода из приповерхностной области образца на его поверхность. Как следует из работ [3,4], при добавлении 5 ат.% золота оно все растворяется в зернах УВСО, поскольку предел растворимости близок к 10 ат.%, т.е. в нашем случае это справедливо до

3 Журнал технической физики, 1997, том 67, № 2

 $x \simeq 0.1$. При этом, согласно нейтронографическом исследованиям, золото замещает медь в позициях Cu(1) цепочек. В работе [4] показано, что такое замещение может приводить к заметному смещению атомов O(1) от оси цепочек (ось b) в базовой плоскости. Этот эффект обусловлен, по-видимому, двумя причинами. Во-первых, ионный радиус золота больше ионного радиуса меди и, во-вторых, длина связи Au-O больше длины связи Cu-O. Смещение же атомов O(1) с оси цепочки может при увеличении температуры образца облегчить создание вакансий в цепочках и переход атомов кислорода из положения O(1) в O(5) [13,14], т. е. увеличить скорость выделения кислорода. В этом случае уменьшение полной энергии активации на 0.3 эВ можно приписать уменьшению величины ΔE от 1.1 эВ для нелегированного материала [8] до 0.8 эВ.

При появлении избытка золота ($x \simeq 0.1$ и более) оно располагается по границам зерен [3]. Кислород растворяется в золоте слабо, и можно полагать, что золото становится диффузионным барьером на пути кислорода к поверхности [15]. В этом случае для керамики УВСО с добавкой 10 ат.% золота увеличение энергии активации E на $\simeq 0.25$ эВ по сравнению с УВСО-Ац (5 ат.%) можно было бы приписать увеличению E_1 — энергии активации для перехода атомов на поверхность от 1.0 [8] до 1.25 эВ. Таким образом, при содержании золота $x \simeq 0.1$ полная энергия активации Е остается почти неизменной по сравнению с энергией активации нелегированной керамики. Небольшое уменьшение скорости выделения кислорода для состава УВСО-Ац (10 ат.%) (кривая 3) по сравнению с нелегированной керамикой (кривая 1) обусловлено некоторым уменьшением предэкспоненциального множителя А в уравнении (2) для состава x = 0.1.

Заключение

В настоящей работе показано, что легирование керамики УВСО золотом (5–10 ат.%) вызывает одноосное расширение решетки материала (в направлении c). Этот эффект, однако, не вызывает существенного изменения T_c . Она остается почти неизменной по сравнению с T_c для нелегированной керамики. Вместе с тем заметное уменьшение диамагнитной восприимчивости керамики УВСО при введении золота указывает на возможность влияния этой добавки на плотность критического тока и величину критических магнитных полей.

Кинетические параметры термического выделения слабосвязанного кислорода претерпевают заметные изменения. Скорость выделения кислорода при $x_{Au} = 0.05$ возрастает, а при $x_{Au} = 0.1$ уменьшается и становится даже немного меньше, чем для нелегированной керамики. Мы полагаем, что эти особенности поведения композита УВСО–Аu при нагреве в вакууме обусловлены как существованием предела растворимости Au в УВСО, так и малой скоростью диффузии кислорода в золоте. Тем не менее возможность сохранения высокого активационного барьера для термического выделения кислорода делает композиционный материал УВСО-Au (10 ат.%) перспективным при использовании высокотемпературных технологий в процессе изготовления изделий из него.

Авторы выражают благодарность В.Н.Шреднику за внимание к работе и полезные обсуждения.

Список литературы

- Власенко К.Е., Русаков К.В., Тюрина Н.Г. // Обзоры по высокотемпературной сверхпроводимости. 1992. № 3(7). С. 3–43.
- [2] Kolesov B.A., Zhakharchuk N.F., Vasilyeva I.G. et al. // Sol. St. Commun. 1992. Vol. 84. N 6. P. 645–649.
- [3] Cieplak M.Z., Gang Xiao, Chien C.L. et al. // Phys. Rev. B. 1990. Vol. 42. N 10. P. 6200–6208.
- [4] Renevier H., Hodeau J.L., Fournier T. et al. // Physica C. 1990. Vol. 172. N 1/2. P. 183–189.
- [5] Kakihana M., Börjesson L., Eriksson S., Svedlindh P. // J. Appl. Phys. 1991. Vol. 69. N 2. P. 867–873.
- [6] Семенченко М.Г., Флейшер В.Г. // СФХТ. 1990. Т. 3. № 2. С. 240–246.
- [7] Крачино Т.В., Митцев М.А. // ЖТФ. 1991 Т. 61.
 Вып. 12. С. 59–64.
- [8] Байков Ю.М., Дунаева Т.Ю., Крачино Т.В. и др. // ФТТ. 1993. Т. 35. Вып. 6. С. 1457–1466.
- [9] Крачино Т.В., Митцев М.А., Степанов Ю.П. // Письма в ЖТФ. 1993. Т. 19. Вып. 24. С. 66-70.
- [10] Овчинников И.М., Сорокин Н.М., Емельченко Г.А. и др. // СФХТ. 1994. Т. 7. № 2. С. 340–343.
- [11] Ван Дузер Т., Тернер Ч.У. Физические основы сверхпроводниковых устройств и цепей. М.: Радио и связь, 1984. 342 с.
- [12] Физические свойства высокотемпературных сверхпроводников / Под ред. Д.М.Гинзберга. М.: Мир, 1990. 543 с.
- [13] La Graff J.R., Payne D.A. // Physica C. 1993. Vol. 212. N 3/4. P. 487–496.
- [14] Аржавитин В.М., Блинкин А.А., Деревянко В.В. и др. // СФХТ. 1993. Т. 6. № 11/12. С. 2095–2103.
- [15] Эспе В. Технология электровакуумных материалов.
 Т. 1. М.: Госэнергоиздат, 1962. 631 с.