Кинетика ионной деполяризации Si-MOП-структур в режиме линейной развертки по напряжению

© Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева

Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Россия

(Получена 17 февраля 1997 г. Принята к печати 15 мая 1997 г.)

Развивается новый подход к описанию изотермической ионной деполяризации Si-MOП-структур в режиме линейного изменения потенциала полевого электрода V_g , основанный на представлениях о существенно неравновесном характере транспорта ионов, изначально локализованных у границы раздела (ГР) SiO₂/Si на мелких объемных ловушках. В рамках термоэмиссионного механизма переноса ионов через барьер, сформированный поляризующим напряжением ($V_g > 0$), рассчитаны динамические вольт-амперные характеристики деполяризации. Результаты расчетов находятся в хорошем согласии с экспериментальными данными — узкие с полушириной ~ kT пики тока, проявляющиеся вблизи $V_g = 0$, и их зависимости от температуры, скорости развертки и начальной плотности ионов у ГР SiO₂/Si. На этом основании в области температури 423–453 К определены эффективная подвижность ионов $\mu\theta = (2.5-11) \cdot 10^{-8} \text{ см}^2/\text{B} \cdot \text{с} (\theta - \text{коэффициент} прилипания), энергия активации <math>\mu$ ($E_{\mu} \cong 0.6$ эВ) и глубина объемных ловушек в SiO₂ ($E_t \cong 0.2$ эВ). Согласно литературным данным, значения $E_{\mu} \cong 0.6$ эВ характерны для подвижных ионов Na⁺.

Изотермические исследования процессов переноса подвижных ионов в диэлектрике структур металл-окиселполупроводник (МОП) на основе Si в динамическом режиме при адекватном подходе должны давать обширную и ценную информацию о кинетике ионного транспорта, существенно влияющего на стабильность и срок службы МОП приборов и интегральных схем [1,2]. Поляризация (деполяризация) диэлектрика при изменении потенциала полевого электрода Vg с постоянной скоростью $\beta_v = dV_g/dt = \text{const} (t - \text{время})$ проявляется на динамических вольт-амперных характеристиках (ВАХ) в весьма удобной для идентификации форме — в виде узких пиков тока, локализованных вблизи $V_{g} = 0$ [3]. Малая ($\sim kT$, *k* — постоянная Больцмана, *T* — абсолютная температура) полуширина пиков ранее интерпретировалась исключительно в рамках представлений о квазиравновесном (больцмановском) распределении ионов в диэлектрике [4,5]. Однако такая интерпретация противоречит известным экспериментальным фактам. Во-вторых, при не слишком высоких температурах ($T \leq 500 \, {
m K}$) узкие пики возникают только на ВАХ деполяризации, а в режиме поляризации при таких же β_{ν} ток описывает относительно невысокие пологие максимумы, несколько смещенные в направлении поляризующих напряжений [3–5] (рис. 1). Это не согласуется с предположением о квазиравновесии, требующем примерного равенства ионных потоков от границы раздела (ΓP) Si/SiO₂ к полевому электроду и в противоположном направлении. Во-вторых, в условиях квазиравновесия плотность ионов у ГР Si/SiO₂ зависит только от величины Vg, и поэтому ток (производная поверхностного заряда по времени) должен быть прямо пропорционален величине β_{v} , что не наблюдается на опыте (рис. 1). Различия в форме ВАХ поляризации и деполяризации свидетельствуют не только об отсутствии квазиравновесия в ионной подсистеме диэлектрика, но и явно указывают на локализацию ионов у ГР с металлом

на состояниях, энергетически более глубоких, чем в объеме SiO₂ или у его контакта с Si. Поэтому при анализе кинетики деполяризации присутствием свободных ионов у металлического электрода можно пренебрегать.

В этой связи в настоящей работе на основании результатов детальных экспериментов по динамической ионной деполяризации Si-MOП-структур развиваются новые представления о ее механизме, базирующиеся на существенно неравновесном характере ионного транспорта.

Измерения проводились в атмосферных условиях на структурах Al (полевой электрод площадью $S = 2.4 \cdot 10^{-2} \, \text{см}^2$), SiO₂ (термический окисел толщиной h = 1700 Å, сформированный в сухом кислороде при 1100°С), (100)Si (концентрация свободных электронов $n = 1 \cdot 10^{13} \,\mathrm{cm}^{-3}$ при $T = 300 \,\mathrm{K}$). Специально подвижные ионы в слой SiO2 не вводились, для исследований отбирались образцы с положительными значениями напряжения плоских зон ($V_{FB} \ge 1 \text{ B}$). Образец размещался в герметичной камере на массивной (диаметр 110 мм, толщина 6 мм) медной шайбе с отшлифованной хромированной поверхностью, закрепленной в кольцевом изоляторе из алундовой керамики на корпусе измерительной ячейки. Нагрев шайбы осуществлялся излучением расположенной под ней галогенной лампы в 500 Вт, снабженной тиристорным регулятором мощности питания. Температура образца контролировалась медь-константановой термопарой с точностью ±0.2°С. С полевым электродом контактировал пружинящий зонд из электролитически заостренной позолоченной вольфрамовой проволоки диаметром 0.5 мм, обеспечивающий также электрический контакт металлизированной тыловой грани кремниевой пластины с поверхностью шайбы, покрытой тонким слоем сплава In-Ga. Генератор треугольных импульсов напряжения позволял задавать в широких пределах значения β_v . Камера герметизировалась металлическим колпаком, выполнявшим также функцию электростатического экрана. Внутри него располагались радиационные отражатели, обеспечивающие температурную однородность рабочей зоны. Образец нагревался до заданной температуры $T_0 \ge 150^{\circ}$ С при небольшом деполяризующем напряжении $V_g \cong 1$ В с целью исключения эффектов остаточной или случайной поляризации. Начальная плотность ионов N_{so} у ГР Si/SiO₂ варьировалась изменением времени ($t \le 5$ мин) и напряжения ($V_g \le +5$ V) поляризации, проводившейся при $T_0 = \text{const.}$ Значения N_{so} определялись по площади пиков тока деполяризации. Квазипостоянная составляющая тока $I = C_{\text{SiO}_2} \cdot \beta_v$ (C_{SiO_2} — емкость диэлектрического промежутка МОП структуры), отчетливо проявлявшаяся на начальной стадии изменения V_g , вычиталась из суммарного тока.

На рис. 1, 2 представлены типичные семейства ВАХ деполяризации при T = 423 К и различных значениях β_{ν} и N_{so} . Видно, что при малых $\beta < 0.06$ В/с пики практически симметричны; области начального нарастания тока всех кривых совпадают; с увеличением β_{ν} амплитуда максимума тока возрастает, а его положение смещается в сторону деполяризующих напряжений $(V_g < 0)$. С увеличением N_{so} (рис. 2) форма пиков практически не изменяется, их полуширина несколько возрастает, а точка максимума тока сдвигается в сторону $V_g > 0$.

Пренебрегая на указанном выше основании обратным потоком ионов от полевого электрода к полупроводнику и учитывая, что в области достаточно больших поляризующих полей ионной деполяризации препятствует барьер

Рис. 1. Зависимость тока деполяризации *I* от скорости развертки β_v при температуре T = 423 К и $N_{so} \cong 1 \cdot 10^{12}$ см⁻²; β_v возрастает от кривой *I* к кривой *6* в последовательности 0.02, 0.03, 0.04, 0.06, 0.1, 0.2 В/с. Кривая 7 — ток поляризации $[I \cdot (-1 \cdot 10^{10}), A]$ при $\beta_v = 0.02$ В/с и T = 423 К. Значения *I* отсчитаны от уровня квазипостоянного емкостного тока. Вставка иллюстрирует существенные качественные различия в ходе процессов деполяризации (верхняя кривая) и поляризации (нижняя кривая), $\beta_v \cong 0.02$ В/с, T = 423 К (сравни с экспериментальными данными [3]).

Рис. 2. Зависимости тока деполяризации *I* при $\beta_v = 0.02$ B/c от начальной плотности ионов N_{so} у границы раздела Si/SiO₂ при температуре T = 423 K, N_{so} возрастает с номером кривой в последовательности (2.8, 4.0, 6.2, 7.0, 8.0) × 10^{11} см⁻².

высотой $U' = qV'_g$ (q — элементарный заряд),¹ в рамках термоэмиссионного механизма переноса имеем

$$I = qS\mu N_0 \varepsilon_h e^{-qV_g'/kT}, \qquad (1)$$

где I — ионный ток, S — площадь структуры, μ — подвижность ионов, N_0 — трехмерная концентрация свободных ионов у ГР Si/SiO₂, ε_h — электрическое поле у полевого электрода. Выражение (1) остается справедливым и при наличии в диэлектрике или на его ГР с полупроводником ионных ловушек, находящихся в равновесии со свободными носителями заряда. Изменение плотности ионов N_s у ГР Si/SiO₂ со временем определяется уравнением кинетики

$$\frac{dN_s}{dt} = -\frac{I}{qS}.$$
 (2)

Будем считать, что ловушки для ионов отсутствуют. Тогда при не слишком высоких электрических полях ε_h в окисле у его ГР с металлом ($\varepsilon_h \ll 2\pi q N_s / \varkappa$, где \varkappa — диэлектрическая проницаемость окисла) $N_0 \cong 2\pi q^2 N_s^2 / \varkappa kT$, а из (1) и (2) следует

$$I = \frac{q^2 S \beta_v}{kT} N_{so} \left[\left(\frac{2\pi q \mu \varepsilon_h N_{so}}{\varkappa \beta_v} \right)^{1/2} e^{-\frac{q V_g'}{2kT}} + \left(\frac{2\pi q \mu \varepsilon_h N_{so}}{\varkappa \beta_v} \right)^{-1/2} e^{\frac{q V_g'}{2kT}} \right]^{-2}.$$
 (3)

¹ Здесь и далее под величиной V'_{g} следует понимать сумму поданного на образец напряжения V_{g} и V_{K} — контактной разности потенциалов Al–Si. Согласно [6], $qV_{K} \cong 0.38 + \{kT \ln[N_{c}(T)/n]\} - \{[kT \ln N_{c}/10^{14}]_{T=300 \text{ K}}\}$ эВ, где N_{c} — эффективная плотность состояний в зоне проводимости Si при температуре T, $n = 10^{13} \text{ см}^{-3}$. Для данных, приведенных на рис. 1, 2, $V_{K} = 0.64 \text{ B}$.

Рис. 3. Зависимости положений максимумов динамических ВАХ $V'_{gm} = V_K + V_{gm}$ от скорости развертки β_v (B/c) при $N_{so} \cong 1 \cdot 10^{12}$ см⁻² (*1*) и от начала плотности ионов N_{so} (см⁻²) при $\beta_v = 0.02$ B/c (*2*), T = 423 К. Для кривой *I* ось V'_{gm} справа, а для кривой *2* — слева.

Очевидно, что соотношение (3) описывает узкий симметричный пик $I(V_g)$ с полушириной $\Delta_{1/2} = (4kT/q)\ln(1+\sqrt{2}).$

Выражение (3) с точностью до переобозначения констант совпадает с полученным в [4,5] в равновесном приближении. По-видимому, это обстоятельство и послужило основанием для ошибочной интерпретации кинетики деполяризации в рамках квазиравновесных представлений.

В точке максимума тока ($I = I_m, V'_g = V'_{gm}$) имеем

$$e^{\frac{qV'_{gm}}{kT}} = \frac{2\pi q\mu\varepsilon_{hm}N_{so}}{\varkappa\beta_{v}}, \quad I_{m} = \frac{q^{2}S\beta_{v}N_{so}}{4kT}, \quad (4)$$

 ε_{hm} — электрическое поле при $V'_g = V'_{gm}$; $\varepsilon_{hm} \cong V'_{gm}/h$. Как и при квазиравновесии [4,5], ток в максимуме возрастает с увеличением β_v и N_{so} , однако в рассматриваемой ситуации положение пика V'_{gm} становится зависящим от скорости развертки β_v и уровня начальной поляризации N_{so} : с ростом β_v величина V'_{gm} сдвигается в сторону деполяризующих напряжений, а с увеличением N_{so} — в противоположном направлении. В области начального нарастания $V'_g - V'_{gm} \gg kT/q$ ток описывается (1) с $N_0 = 3\pi q^2 N_{so}^2 / \varkappa kT$ и не зависит от β_v .

Как видно из рис. 1–3, все указанные следствия отчетливо проявляются в эксперименте. На рис. 3 приведены наблюдающиеся зависимости V'_{gm} от β_v и от N_{so} , которые в соответствии с выражением (4) оказываются линейными в масштабах $V'_{gm} - \lg \beta_v$ и $V'_{gm} - \lg N_{so}$. Их угловые коэффициенты, согласно (4), должны быть равны (по абсо-

лютной величине) kT/0.43q. Реальные значения этих коэффициентов практически одинаковы, но приблизительно вдвое меньше расчетных (в 2.2 раза — для кривой Iи в 2.1 раза — для прямой 2 (рис. 3)). Соответственно зависимости lg $I-V'_g$ в области начального нарастания тока, $V'_g-V'_{gm} \gg kT/q$, являются прямыми, тангенс угла наклона которых меньше теоретического (см. (1)), в $\nu = 2.05$ (423 K) и $\nu = 1.82$ (453 K) раз (рис. 4). Проявления фактора неидеальности $\nu > 1$, уменьшающегося с ростом T, характерны для термоэмиссионных явлений на контактах [7]. Важно подчеркнуть близость значений ν , найденных путем независимых измерений при одинаковых температурах.

Хорошее согласие теории и эксперимента позволяет оценить подвижность ионов и ее энергию активации E_{μ} . Вводя коэффициент ν в показатель экспоненты соотношения (4), получаем

$$\mu \equiv \mu_0 e^{-E_\mu/kT} = rac{arkappa eta_
u h}{2\pi q V_{gm} N_{so}} e^{rac{q V_{gm}'}{
u kT}}$$

Подставляя в это выражение экспериментальные значения $\beta_v = 0.02$ B/c, $h = 1.7 \cdot 10^{-5}$ см, $N_{so} = 1 \cdot 10^{12}$ см⁻², $V_K = 0.64$ B, $V'_{gm} = 0.7$ B (423 K); $N_{so} = 0.8 \cdot 10^{12}$ см⁻²,

Рис. 4. Динамические BAX $\lg I - V_g$ в области начального нарастания тока деполяризации при температурах 423 (1) и 453 К (2), $\beta_v = 0.02$ B/c, $N_{so} \cong 1 \cdot 10^{12}$ см⁻². На вставке — качественный ход потенциальной энергии ионов U в диэлектрическом промежутке при отсутствие (1) и наличии (2) встроенного барьера, обусловленного заполнением объемных ионных ловушек в приповерхностном слое SiO₂ у его ГР с Si. Диэлектрический слой занимает область $0 \leq z \leq h$, z = 0 соответствует ГР Si/SiO₂, а z = h — границе полевого электрода.

Рис. 5. Динамические ВАХ деполяризации при больших скоростях развертки $I(V_g)$ при T = 423 К и $N_{so} \cong 7.4 \cdot 10^{11}$ см⁻², β_v возрастает с номером кривой в последовательности 0.06, 0.2, 0.5, 1.0 и 2.0 В/с. На вставке — временная зависимость тока на хвостах кривых деполяризации при $\beta_v = 0.5$ (*a*), 1.0 (*b*) и 2.0 (*c*) В/с.

 $V_K = 0.67 \text{ B}, V'_{gm} = 0.765 \text{ B} (453 \text{ K}),$ а также наиболее надежные величины ν , определенные по наклонам ВАХ (рис. 4) $\nu = 2.05$ (423 K), $\nu = 1.82$ (453 K), находим при $\varkappa_{\text{SiO}_2} = 3.9$: μ (423 K) $\cong 2.5 \cdot 10^{-8}$, μ (453 K) $\cong 1.1 \cdot 10^{-7} \text{ см}^2/\text{B} \cdot \text{с}$ и $E_{\mu} \cong 0.8 \text{ эB}.$

Рассмотренная ситуация реализуется только при малых β_v ($\beta_v < 0.06$ B/c, T = 423 K (рис. 1–4)). С ростом β_{ν} характер пиков резко изменяется: они становятся все более асимметричными, и после максимумов, сильно смещенных в направлении $V_g < 0$, на кривых появляются "хвосты" медленно затухающего тока; в конце концов ток на хвостах вообще перестает зависеть от V_g , становясь лишь функцией реального времени t (рис. 5). Зависимости $I(V'_{e})$ в области нарастания тока и $V'_{em}(\beta_{v})$ перестают следовать соотношениям (1) и (4). Эти факты однозначно указывают на присутствие в слое SiO2 ионных ловушек, не успевающих при больших β_v опустошаться за времена термоэмиссии свободных ионов через барьер U'_{g} и обусловливающих проявление классического экспоненциального закона релаксации $I \sim e^{-t/ au_t}$ на хвостах кривых деполяризации, τ_t — время жизни ионов на ловушках (см. вставки на рис. 5,6). При этом необходимо полагать, что в начале опыта (при больших поляризующих напряжениях) практически весь ионный заряд сосредоточен на ловушках, поскольку при самых быстрых развертках ($\beta_{\nu} > 0.2 \,\text{B/c}$) основной вклад в площадь пика деполяризации дает именно экспоненциальный хвост кривых релаксации.² Именно это обстоятельство и проявляется (чисто наблюдательно) в увеличении с ростом β_{ν} полуширины спадающей ветви тока. Заполнение ловушек нельзя считать предельным по крайней мере

на уровне достигаемых значений $N_{so} \leq 2 \cdot 10^{12} \,\mathrm{cm}^{-2}$, в противном случае при больших β_v на нарастающей ветви тока должен был бы выполняться термоэмиссионный закон кинетики деполяризации свободных ионов (1) со значениями N_0 , отвечающими начальному состоянию поляризации, что противоречит опыту (рис. 5). Таким образом, при больших U'_g пока характерное время термоэмиссии $\tau_e \sim \exp(-U'_g/kT)$ превышает τ_t ловушки успевают приходить в равновесие со свободными ионами и деполяризация SiO₂ определяется ионным переносом через барьер высотой U'_g (вставка на рис. 4). По мере уменьшения U'_g соотношение между τ_e и τ_t инвертируется, деполяризация перестает лимитироваться барьером и с ростом β_v все меньшая часть поляризационного заряда стекает по термоэмиссионному механизму.

Линейность графиков $\lg I - t$ (рис. 6) свидетельствует о моноэнергичности ионных ловушек — это позволяет найти значения $\tau_t \equiv \tau_0 e^{E_t/kT}$ и по их зависимости от температуры определить энергию активации ловушек E_t . На основании данных (рис. 6) имеем: $\tau_t \cong 2 c (423 \text{ K})$, 1.4 c (453 K) и $E_t \cong 0.2 \text{ эB}$.

Возникают два существенных вопроса: где расположены эти ловушки (на поверхности раздела SiO₂ или в объеме SiO₂) и как факт их существования повлияет на результаты, полученные выше в рамках представлений о чисто свободном состоянии ионов у ГР SiO₂/Si. По аналогии с равновесными электронными явлениями в полуизоляторах [8] для поверхностных ловушек с концентрацией N_{st} имеем $N_0 = N_{1/2}(N_s/N_{st})$, где $N_{1/2}$ — характерная концентрация свободных ионов, при которой ловушки заполенены наполовину. Поэтому (1) и (2) при малых β_v опишут асимметричный пик, характерный для релаксационной спектроскопии, с полушириной нараста-

Рис. 6. Временные зависимости тока на хвостах кривых деполяризации в полулогарифмическом масштабе при $\beta_v = 0.5$ В/с: I - T = 423 К, 2 - T = 453 К. Прямая 2 лежит ниже прямой I, поскольку с ростом температуры относительный вклад экспоненциального хвоста в площадь пика деполяризации уменьшается. На вставке — зависимость от скорости развертки β_v плотности ионов \tilde{N}_{so} , рассчитанной по величине заряда, перетекшего через диэлектрический промежуток в течение "экспоненциальной" релаксации при температуре 423 К ($N_{so} \cong 7.4 \cdot 10^{11}$ см⁻²).

² Это видно из зависимости от β_v плотности ионов $\tilde{N}_{so} = \tilde{I} \cdot \tau_t / qS$ (\tilde{I} — ток в момент времени t, отвечающий переходу к экспоненциальному закону релаксации). Данная зависимость испытывает отчетливую тенденцию к насыщению на уровне, близком к исходному значению N_{so} (вставка на рис. 6).

ющей ветви, в ≈ 1.4 раза превышающей полуширину спадающей [9]. Поскольку на опыте пики симметричны (рис. 1, 2), ловушки следует считать распределенными по объему в приграничном с Si слое SiO₂. Полагая, что это распределение однородное, объемная концентрация ловушек равна N_t, свободные и локализованные ионы находятся в равновесии, а набег потенциала на слое заполненных ловушек $(2\pi q^2 N_s^2 / \varkappa N_t) \leq kT_s^3$ имеем $N_0 = \theta \cdot (2\pi q^2 N_s^2 / \varkappa kT)$, где $\theta = N_{1/2} / N_t$ — коэффициент прилипания. Следовательно, при достаточно малых N_s и β_v или больших N_t (в рассматриваемой ситуации достаточно $N_t \ge 6 \cdot 10^{18} \,\mathrm{cm}^{-3})$, как и в случае чисто свободных ионов, деполяризация должна протекать в соответствии с законами (1)-(4), но с перенормированным значением подвижности, а полученные ранее величины μ и E_{μ} должны быть изменены с учетом реальных значений θ и энергии активации ловушек, т. е. $\mu \to \theta \cdot \mu$ и $E_{\mu} \to E_{\mu} + E_t$. Это дает истинное значение $E_{\mu} \cong 0.6$ эВ, которое очень близко к энергии активации подвижности ионов Na⁺, определенной методом времен пролета при очень высоких $N_{so} (\ge 5 \cdot 10^{13} \, \text{см}^{-2})$, т.е., по-видимому, при предельном заполнении ловушек [1,11].⁴ Данный факт, как и генезис формы пиков тока деполяризации с ростом β_{ν} (симметричных при малых β_{ν} и обнаруживающих экспоненциальный хвост при больших β_v), подтверждает концепцию объемных ловушек. Максимальная скорость развертки, при которой нарастающую ветвь тока еще можно описывать "стационарным" соотношением (1), ограничивается скоростью установления диффузионно-дрейфового равновесия, максвелловское время $\tau_M \sim qh^2/\mu kT$. При 423 К ($\mu = 2.5 \cdot 10^{-8} \, \mathrm{cm}^2 / \mathrm{B} \cdot \mathrm{c}$) оно составляет $\sim 0.3 \, \mathrm{c}$ и оказывается для $\beta_{\nu} > 0.05 \,\text{B/c}$ порядка характерного времени нарастания тока деполяризации. На опыте наблюдается именно запаздывание сигнала, отчетливо проявляющееся на рис. 3 (кривая 1) в виде резкого отхода зависимости $\lg \beta_v - V'_{gm}$ от линейного закона (4), экспериментальные значения V'_{gm} при больших β_v становятся заметно меньше теоретических, причем запаздывание нарастает с ростом β_{v} , т.е. скорость смещения максимума тока в направлении $V_g < 0$ увеличивается. При $\beta_v \to \infty$ прогрессивно все большая часть ионов будет перемещаться к ГР SiO2/металл во все более сильном деполяризующем поле при $V'_g < 0$. В таких условиях должны проявляться хорошо известные из физики токов, ограниченных пространственным зарядом, эффекты пролета фронта [8,12], дисперсионного переноса [13,14] и т.д. Опыты по наблюдению такого рода эффектов естественно проводить не в режиме динамической развертки, а на ступенчатых сигналах напряжения, т.е. при U'_g = const, в режимах как изотермической, так и термостимулированной релаксации.

Таким образом, качественная картина кинетики ионной деполяризации в режиме $\beta_v =$ const весьма проста. В диэлектрическом промежутке у поверхности Si ионы локализуются на неглубоких объемных ловушках, причем ширина области локализации меньше максимальной, соответствующей набегу потенциала на слое заполненных ловушек, порядка E_t/q . При не слишком больших β_v скорость деполяризации определяется двумя характерными временами: временем термоэмиссии τ_e через естественный барьер, создаваемый поляризующим напряжением $(V'_g > 0)$, и временем жизни ионов τ_t на объемных ловушках. Поэтому в зависимости от величины β_v реализуется либо квазистационарный режим транспорта ионов через барьер высотой U'_g (малые β_v), либо классическая кинетика опустошения ловушек (большие β_v).

Хорошее согласие полученных экспериментальных данных с результатами независимых опытов свидетельствует не только о возможностях регистрации по динамическим ВАХ МОП-структур факта присутствия в диэлектрике подвижных ионов и оценки их плотности, но и о возможности определения важнейших параметров ионного транспорта с привлечением чрезвычайно простых методических средств.

Авторы признательны Н.Ф. Кухарской и И.Н. Туляковой за многоплановую конструктивную помощь.

Список литературы

- J.F. Verwey, E.A. Amerasekera, J. Bisschop. Rep. Prog. Phys., 53, 1297 (1990).
- [2] G.S. Horner, M. Kleefstra, T.G. Miller, M.A. Peters. Sol. St. Technol., 79, (June, 1995).
- [3] M. Kuhn, D.J. Silversmith. J. Electrochem. Soc.: Sol. St. Science, 118, 966 (1971).
- [4] A.G. Tangena, J. Middelhock, N.F. de Rooij. J. Appl. Phys., 49, 2876 (1978).
- [5] A.G. Tangena, N.F. de Rooij, J. Middelhock. J. Appl. Phys., 49, 5576 (1978).
- [6] С. Зн. Физика полупроводниковых приборов. (М., Мир, 1984).
- [7] М. Щур. Современные приборы на основе арсенида галлия (М., Мир, 1991).
- [8] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [9] E.I. Goldman, A.G. Zhdan. Semicond. Sci. Technol., 5, 675 (1990).
- [10] Е.И. Гольдман. ФТП, **31**, 45 (1997).
- [11] R.J. Krieger, T.F. Devenyi. Thin Solid Films, 36, 435 (1976).
- [12] К. Као, В. Хуанг. Перенос электронов в твердых телах (М., Мир, 1984).
- [13] E.W. Montroll, G. Weiss, J. Math. Phys., 6, 167 (1965).
- [14] И.П. Звягин. Кинетические явления в неупорядоченных полупроводниках (М., Изд-во москов. ун-та, 1984).

Редактор В.В. Чалдышев

³ Если концентрация N_t объемных ловушек не слишком велика $(2\pi q^2 N_s^2)/\varkappa N_t \gg kT$, то вследствие их заполнения в примыкающем к полупроводнику поверхностном слое диэлектрика может возникать встроенный барьер высотой U'_* (кривая 2 на вставке к рис. 4). При этом кинетика деполяризации станет иной, опустошение ловушек будет запаздывать, поскольку делокализация ионов и их смещение к ГР SiO₂/металл станут возможными только в области $z > z^*$ (рис. 4). Такое запаздывание должно приводить к неэкспоненциальной временной зависимости тока деполяризации [10].

⁴ Определение концентрации ловушек N_t , а следовательно, и величины θ возможно только при значениях N_{so} , обеспечивающих как минимум их предельное заполнение [8], которого в настоящих опытах достичь не удалось.

A kinetics of ion Si–MOS structure depolapization in the regime of linear voltage sweeping

A.G. Zhdan, E.I. Goldman, G.V. Chucheva

Institute of Radioengineering and Electronics, Russian Academy of Sciences, 141120 Fryasino, Moscow Region, Russia

Abstract A new approach has been suggested to desribe the isotermical ion depolarization of Si-MOS structures in the regime of linear gate electrode potential V_g changing. The approach is based on the concept of a substantially nonequilibrium character of ion transport, the ions being initially localized at SiO₂/Si interface on shallow bulk traps. Dynamic voltage-current characteristics of depolarization are calculated in the framework of the thermoemission mechanism of ion transport through the barrier formed by a polarization voltage $(V_g > 0)$. The results of calculations describe well the experimental data; narrow peaks of current with a semiwidth $\sim kT$, which are localized near $V_g = 0$, and their temperature dependences as well as the sweeping rate and initial density of ions at the SiO₂/Si interface. Thus the effective ion mobility $\mu\theta = (2.5-11) \cdot 10^{-8} \text{ cm}^2/\text{V} \cdot \text{s}$ (θ is the ratio of the free and total ion concentrations), the activation energy μ $(E_{\mu} \cong 0.6 \,\mathrm{eV})$ and the trap energy in SiO₂ $(E_t = 0.2 \,\mathrm{eV})$ have been found in the temperature range 423-453 K. According to literature data, the values $E_{\mu} \cong 0.6 \,\mathrm{eV}$ are characteristic of mobile ions of Na⁺.