Оптическая спектроскопия двумерных электронных состояний в модулированно-легированных гетероструктурах *N*-AlGaAs/GaAs

© А.В. Гук, В.Э. Каминский, В.Г. Мокеров, Ю.В. Федоров, Ю.В. Хабаров

Институт радиотехники и электроники Российской академии наук, 103907 Москва, Россия

(Получена 22 октября 1996 г. Принята к печати 18 марта 1997 г.)

Исследованы при 77 К спектры фотолюминесценции, связанные с двумерным электронным газом в модулированно-легированных гетероструктурах *N*-AlGaAs/GaAs с различными толщинами нелегированного спейсер-слоя d_s . Все исследованные образцы имели нелегированный сверхрешеточный буферный слой (в качестве второго гетероперехода), расположенный на расстоянии d_a ниже основного гетероперехода. Выполнен теоретический анализ полученных данных путем их сравнения со спектрами, рассчитанными на основе самосогласованного решения уравнений Шредингера и Пуассона. Для 13 $\leq d_a \leq 40$ нм спектры фотолюминесценции имели две линии при энергиях фотонов $h\nu_1$ и $h\nu_2$ ($h\nu_2 > h\nu_1$) с интенсивностями I_1 и I_2 соответственно. Эта дублетная структура связана с оптическими переходам между нижними электронными подзонами E_e^1 , E_e^2 и низшими подзонами тяжелых E_{hh}^1 , E_{hh}^2 и легких E_{lh}^1 дырок. Показано, что отношение интенсивностей I_2/I_1 при снижении d_s вызвано увеличением заселенности верхней подзоны E_e^2 и уменьшением вероятности оптических переходов из нижней подзоны E_e^1 . Сдвиг обоих линий в этом случае в сторону меньших энергий связан с увеличением изгиба зон. Показано, что изменение расстояния d_a различным образом влияет на величины I_1 , I_2 и спектральное положение компонентов дублета $h\nu_1$, $h\nu_2$. Это связано с существенным различием пространственной протяженности волновых функций электронов $\Psi_e^1(z)$ и $\Psi_e^2(z)$.

Оптические исследования двумерного электронного газа (ДЭГ) в гетероструктурах (ГС) AlGaAs/GaAs обеспечивают прямые сведения об основных параметрах электронных подзон (их энергии, ширине, степени заполнения и т.д.) [1–4], дополняя, а иногда и превосходя по информативности гальваномагнитные измерения. Однако, до сих пор они были направлены в основном на изучение квантового эффекта Холла и вигнеровской кристаллизации, поэтому выполнялись при очень низких температурах и ограничивались, как правило, малыми значениями концентрации ДЭГ (< 10¹¹ см⁻²).

В то же время на примере псевдоморфных гетероструктур AlGaAs/InGaAs/GaAs было показано [5,6], что исследование спектров фотолюминесценции (ФЛ) при температурах жидкого азота и даже комнатной является эффективным методом изучения электронных состояний в модулированно-легированных ГС (МЛГС).

Однако для системы AlGaAs/GaAs такие исследования не проводились. Последнее обусловлено трудностью выявления эффектов, связанных с ДЭГ, из-за их маскирования интенсивной ФЛ, соответствующей межзонной излучательной рекомбинации трехмерных носителей тока.

Данная работа посвящена изучению двумерных электронных состояний в МЛГС *N*-AlGaAs/GaAs методом ФЛ, включая особенности их поведения при введении в стандартную ГС 2-го (нелегированного) гетеробарьера (ГБ) со стороны подложки (на расстоянии d_a от основного ГБ). Используя такие двухбарьерные МЛГС, мы смогли существенно ослабить (при малых d_a) вклад трехмерных носителей в спектры ФЛ и исследовать спектры ФЛ, обусловленные излучательной рекомбинацией ДЭГ и дырок в системе AlGaAs/GaAs при температуре жидкого азота.

В работе также изложены теоретические подходы, описывающие основные закономерности в спектрах $\Phi \Pi$, вычислены волновые функции и энергии электронных и дырочных подзон, их заселенности, а также матричные элементы оптических переходов в зависимости от расстояния между гетеробарьерами (ГБ) d_a и концентрации ДЭГ n_{2d} .

Экспериментальная часть

Двухбарьерные МЛГС были выращены методом молекулярно-лучевой эпитаксии (МЛЭ) на полуизолирующих подложках GaAs с ориентацией (001). Они включали нелегированный буферный слой GaAs толщиной 0.5 мкм, нелегированную 20-периодную сверхрешетку Al_{0.25}Ga_{0.75}As (1.5 нм)/GaAs (1.2 нм), формирующую нижний гетеробарьер, активный нелегированный слой

Рис. 1. Зонная диаграмма (для сверхрешетки показан эффективный барьер).

Рис. 2. Экспериментальные и расчетные спектры $\Phi \Pi$ для различных значений ширины квантовой ямы ($a - d_s = 3$ нм, $b - d_s = 10$ нм).

GaAs толщиной d_a , затем нелегированный спейсер-слой Al_{0.25}Ga_{0.75}As, толщиной d_s и легированный кремнием $(N = 1 \cdot 10^{18} \text{ см}^{-3})$ *п*-слой Al_{0.25}Ga_{0.75}As толщиной 60 нм, формирующие основной МЛГБ. Структура завершалась верхним нелегированным слоем GaAs толщиной 10 нм. Профиль зоны проводимости полученной структуры представлен на рис. 1. Расстояние между гетеробарьерами d_a изменялось в диапазоне от 6.5 нм до 1 мкм и более. Для исследования вклада размерного квантования в активном слое GaAs, обусловленного его ограничением исключительно стенками гетерограниц, были также выращены ГС, в которых все слои не легировались, так чтобы формировать прямоугольную квантовую яму (КЯ). Измерения спектров ФЛ выполнялись при T = 77 К. В качестве источника возбуждения ФЛ использовали Ar^+ -лазер с плотностью облучения ~ 100 BT/см².

На рис. 2 представлены спектры ФЛ МЛГС с различными значениями d_a и d_s . Для образцов с $d_a > 50$ нм, независимо от степени легирования и толщины d_s , в спектре ФЛ наблюдалась только одна линия (рис. 2, *a*), спектральное положение которой $h\nu_0 = 1.508$ зВ не зависело от вариации d_a в диапазоне $50 \div 1000$ нм и выше и соответствовало межзонной излучательной рекомбинации трехмерных носителей в GaAs при 77 K, т. е. равнялось ширине запрещенной зоны $E_g = 1.508$ зВ при этой температуре.

Рис. 3. Экспериментальная (штриховая линия) и расчетная (сплошная) зависимости интенсивности ФЛ (в максимуме) 3*D* электронов от расстояния между гетеробарьерами.

На рис. 3 приведена зависимость интенсивности этой линии в максимуме I_M от d_a . Как видно из рис. 3, I_M с увеличением d_a возрастает. Интересно, что хотя с увеличением d_a скорость возрастания $I_M(d_a)$ несколько замедляется, но отсутствует эффект насыщения, ожидаемый при $d_a > 0.4$ мкм, когда должно выполняться условие $\alpha d_a \gg 1$, где $\alpha \approx 10^4$ см⁻¹ — коэффициент поглощения в GaAs на длине волны возбуждающего лазера. Отсутствие эффекта насыщения в $I_M(d_a)$ может быть связано с уменьшением доли фотоносителей, участвующих в поверхностной безызлучательной рекомбинации на гетерограницах.

Обнаружено, что при малых d_a , вблизи $d_a \approx 40 \div 50$ нм И ниже, форма спектра ΦЛ МЛГС претерпевает принципиальные изменения. А именно, исходная линия при $h\nu_0$ 1.508 эВ =трансформируется в дублетную структуру (рис. 2), состоящую из высокоэнергетического пика при $h\nu_2$ и низкоэнергетического "плеча" (или пика) при $h\nu_1$. Этот факт приписывается переходу от ФЛ трехмерных носителей к ФЛ с участками ДЭГ. Возникшая дублетная структура связывается с оптическими переходами из 2-х нижних подзон ДЭГ, локализованного у верхнего МЛГП, в подзоны дырочной ямы, расположенной у нижнего гетеробарьера (рис. 1). Данная структура возникает, когда большинство фотовозбужденных носителей захватывается в упомянутые электронную и дырочную ямы и когда перекрытие их волновых функций становится достаточным для заметной излучательной рекомбинации.

В случае нелегированных ГС, в которых изгиб зон, связаный с ДЭГ, мал, дублетная структура в спектре $\Phi Л$ при $d_s \leq 40$ нм не возникает. В таких структу-

рах формируется КЯ, близкая к прямоугольной, и в соответствии с этим наблюдается только одна линия $\Phi \Pi$. Ее спектральное положение при уменьшении d_a сдвигается к большим $h\nu$ из-за размерного квантования обусловленного гетеробарьерами. Эта линия всегда занимает промежуточное спектральное положение между компонентами дублета в МЛГС (рис. 2).

Как видно из рис. 2, интенсивности компонентов дублетной структуры в МЛГС, их форма и спектральное положение зависят от d_a и d_s . В таблице приведены ее основные характеристики для МЛГС (при $d_a \leq 30$ нм) с различными значениями d_a и d_s .

Здесь I_2 и I_1 — интенсивности (в максимумах) высокои низкоэнергетического компонентов дублета соответственно, а $h\nu_2$ и $h\nu_1$ — их спектральные положения, $h\Delta_{12} = h\nu_2 - h\nu_1$ — спектральное расщепление компонентов дублета, $h\nu_0$ — спектральное положение линии ФЛ в нелегированных ГС (понятие d_s для этих структур лишено смысла).

Из рис. 2 и таблицы следует, что при уменьшении толщины спейсер-слоя d_s (и, соответственно, возрастания концентрации ДЭГ *n* и связанного с ним самосогласованного потенциала изгиба зон) для всех МЛГС (при $d_a \leq 30$ нм) имеют место:

— увеличение отношения интенсивностей I_2/I_1 как за счет сильного уменьшения I_1 , так и увеличения I_2 ;

— спектральный сдвиг обоих компонентов дублета в сторону меньших энергий. Причем пик $h\nu_1$ сдвигается сильнее, чем $h\nu_2$, что обусловливает увеличение спектрального расщепления дублета $h\Delta\nu_{12}$ при снижении d_a .

Интересно, что для МЛГС с 18 нм $\leq d_a \leq 30 \div 40$ нм компонента $h\nu$ располагается при энергиях фотонов,

d_a , нм	d_s , нм	$h\nu_1,$ эВ	$h\nu_2,$ эВ	$h\nu_0,$ эВ	$h\Delta u_{21},$ мэВ	I_2/I_1
30	10	1.496	1.510		13.5	7
	3	1.490	1.512	1.509	22	12
25	10	1.503	1.419		17	2
	3	1.492	1.517	1.511	25	7.7
22.5	10	1.503	1.520	1.512	17	1.8
	3	1.493	1.518		25	4.27
20	10	1.506	1.531	1.515	25	0.75
	3	1.500	1.526		26	3.47
18	10	1.509	1.532	1.517	23	0.7
	3	1.503	1.526		23	1.93
15	10	1.511	1.538	1.521	27	0.41
	3	1.508	1.536		28	1.27
13.5	10	1.512	1.545	1.523	33	0.18
	3	1.506	1.540		34	0.39
12	10	1.515	1.553	1.528	38	0.09
	3	1.513	—		—	_
10	10	—	—	1.535	—	_
	3	1.523	—		_	_
8.5	10	—	—	1.545	—	—
	3	1.536	—		—	—
6.5	10	—	—	1.5609	—	—
	3	1.547	—		—	—

меньших, чем ширина запрещенной зоны E_g в GaAs при 77 К.

Отчетливые закономерности также обнаруживаются и для зависимости спектров ФЛ от расстояния между гетеробарьерами d_a (для $d_a \leq 30$ нм). При снижении d_a они проявляются в следующем:

— сдвиг обоих компонентов дублета в МЛГС в сторону больших энергий. При этом линия $h\nu_0$ в нелегированных ГС также сдвигается к большим $h\nu$;

— происходит увеличение энергетического расщепления между компонентами дублета за счет более сильного сдвига пика $h\nu_2$ к большим $h\nu$ (по сравнению со сдвигом компонента $h\nu_1$);

— уменьшение отношения интенсивностей I_2/I_1 за счет увеличения I_1 и уменьшения I_2 .

Далее представлены результаты теоретических расчетов, выполненные для обоснования экспериментальных результатов.

Отдельно будут рассмотрены:

1. "Широкие ямы" ($d_a > 50$ нм), в случае которых изза большого расстояния между электронной и дырочной КЯ перекрытие волновых функций двумерных электронов и дырок мало, так что в спектр ФЛ дает вклад только межзонная рекомбинация трехмерных носителей.

2. Квантовые ямы (для $d_a \leq 30 \div 40$ нм), в случае которых спектр ФЛ соответствует оптическим переходам с участием ДЭГ.

Теоретические модели

1. Сначала проанализируем зависимость интенсивности ФЛ от d_a в широких ямах (рис. 3). Как известно, основным механизмом релаксации энергии неравновесных носителей в GaAs при температурах $T \ge 77$ К является испускание оптических фононов. Для таких процессов характерная длина релаксации энергии составляет ~ 50 нм, и поэтому в случае широких ям все фотовозбужденные носители должны рекомбинировать в пределах ямы. При стационарной накачке и слабом уровне возбуждения распределение избыточных электронов δn и дырок δp ($\delta n = \delta p$) по координате z (вдоль направления роста слоев) описывается следующим уравнением:

$$D\frac{d^2(\delta n)}{dz^2} = Ge^{-\alpha z} + \frac{\delta n}{\tau},\tag{1}$$

где D — коэффициент амбиполярной диффузии, G — скорость фотогенерации при z = 0 и τ — эффективное время жизни

$$\frac{1}{\tau} = \frac{1}{\tau_r} + \frac{1}{\tau_{nr}},$$

где τ_r — время жизни для межзонной излучательной рекомбинации и τ_{nr} — суммарное время жизни всех остальных типов безызлучательной и излучательной объемной рекомбинации. Очевидно, что для интенсивности ФЛ *I* справедливо следующее:

$$I \sim \int_{0}^{d_a} \delta n(z) dz.$$
 (2)

Если принять, что скорость поверхностной рекомбинации S_0 одинакова для обоих гетерограниц, то интегрируя (1) и подставляя в (2), получаем

$$I = B \frac{S[\operatorname{ch}(d_a/L) - 1] + \operatorname{sh}(d_a/L)}{(1 + S^2)\operatorname{sh}(d_a/L) + 2S \cdot \operatorname{sh}(d_a/L)} \times [(\alpha L + S)(\alpha L - S) \exp(-\alpha d_a)] - [1 - \exp(-\alpha d_a)]/\alpha L, \qquad (3)$$

где $S = S_0 L/D$, $L = \sqrt{D\tau}$ — длина амбиполярной диффузии, B — коэффициент пропорциональности.

В случаяе наших экспериментов выполняются условия $d_a/L \ll 1$ и $\alpha L \gg 1$. Сравнение экспериментальных значений *I* на рис. 3 с результатами расчета показывает, что наилучшее согласие с экспериментом достигается при $S \ll 1$ и (3) может быть представлено в упрощенном виде:

$$I = B\alpha L \frac{d_a}{d_a + 2SL} \left(1 - e^{-\alpha d_a} \right).$$
(4)

Обработка экспериментальных результатов по методу наименьших квадратов с использованием (4) дает $S = 2.7 \cdot 10^{-3}$, что соответствует $S_0 = 10$ см/с. Это означает, что скорость поверхностной рекомбинации в исследуемых ГС очень мала, а выражение (4) хорошо описывает зависимости интенсивности ФЛ от ширины ямы (рис. 2).

2. Квантовые ямы $(d_a \leq 30 \div 40 \text{ нм}).$

При вычислении характеристик ФЛ было выяснено, что для хорошего совпадения с экспериментом необходимо точное определение эффективной высоты сверхрешеточного (СР) барьера. Его высота вычислялась по модели Кронига–Пенни. Она составила $0.48\Delta E_c$ и $0.44\Delta E_v$ для электронов и дырок соответственно, где ΔE_c и ΔE_v — разрывы зоны проводимости и валентной зоны на гетерогранице GaAs/Al_{0.25}Ga_{0.75}As соответственно.

Если при расчетах нелегированных ГС предположить, что КЯ является прямоугольной, то не удается достичь согласия с экспериментом. Причиной этого является изгиб зон (рис. 1). Вычисление энергий, волновых функций и заселенности подзон ДЭГ в МЛГС выполнялось в приближении $\delta n \ll n$ (квазиравновесная ситуация) путем решения системы уравнений (система Кона–Шэма) [7]:

$$-\frac{\hbar^2}{2m_c}\frac{d^2\Psi_e^i}{dz^2} + U_e(z)\Psi_e^i = E_e^i\Psi_e^i,$$
 (5)

$$\chi \frac{d^2 \varphi}{dz^2} = q \big[n - N(z) \big], \tag{6}$$

где z — направление, перпендикулярное гетерограницам, $\Psi_e^i(z)$ — огибающая волновая функции, $U_e(z)$ — потенциальная энергия, χ — диэлектическая проницаемость, $\varphi(z)$ — электростатический потенциал, который определяется равновесным распределением электронов, E_e^i — энергия движения электронов вдлоль z, N(z) —

концентрация примеси.

$$U_e(z) = \Delta E_c(z) - q(\varphi + \varphi_{xc}), \qquad (7)$$

где $\varphi_{xc} = \frac{q}{3\pi\chi} n^{1/3}$ — потенциал обменно-корреляционного взаимодействия электронов, и

$$n = \int n_{s_E} |\Psi_e|^2 dE, \qquad (8)$$

где n_{s_E} — слоевая концентрация электронов с энергией E.

В (8) интегрирование производится как по дискретным, так и по непрерывным участкам спектра. Для дырок уравнение (5) записывается в том же виде, что и для электронов, с потенциальной энергией

$$U_p(z) = \Delta E_v(z) + q(\varphi + \varphi_{xc}). \tag{9}$$

В плоскости гетероперехода движение электронов и дырок не ограничено и волновые функции являются плоскими волнами. Новым в выражении (9) является введение в потенциальную энергию для дырок потенциала обменно-корреляционного взаимодействия φ_{xc} , зависящего только от концентрации электронов. Расчеты показали, что без этого нельзя получить удовлетворительного согласия с экспериментом. Для электронов введение φ_{xc} , зависящего только от концентрации электронов, в ведения φ_{xc} , зависящего только от концентрации электронов, в (9) нам не известно.

Задача вычисления энергий оптических переходов последовательно выполнялась путем решения самосогласованной системы уравнений (5)–(8) для электронов, а затем, используя полученые значения потенциала (9), решалась система уравнений (5) и (9) для дырок. Такой упрощенный подход возможен в нашем случае, поскольку выполняется условие $\delta p \ll n$.

В случае $\delta n \sim n$ было бы необходимо самосогласовано решать полную систему уравнений для электронов и дырок. Это не представляет особых затруднений, если известны функции распределения носителей по энергии.

Следует отметить, что в случае электронов рассматриваемая МЛГС представляет собой две почти независимые потенциальные ямы (перед сверхрешеточным гетеробарьером и за ним). Поэтому для упрощения расчетов система уравнений (5)–(8) решалась отдельно для каждой из ям, а уравнение связи для потенциалов на границах СР получалось из решения (6) в области СР при n = 0.

Решение выполнялось численно итерационным методом. Подробно эта процедура изложена в [8].

После всех этих вычислений спектр ФЛ рассчитывается достаточно просто. В качестве функций распределения носителей по энергии были взяты функции Ферми– Дирака с квазиуравнениями Ферми $E_{F,e} = E_F - \delta_e kT$ и $E_{F,h} = E_F - \delta h kT$ для электронов и дырок соответственно (E_F — равновесное значение энергии Ферми). Можно показать, что в случае $\delta n \ll n$ выполняется условие $\delta h \gg \delta_e$. Тогда из интеграла столкновений Больцмана получаем следующее выражение для интенсивности ФЛ:

$$I(h\nu) = B(e^{\delta_n} - 1) \sum_{i,j} \frac{W_{ij}}{1 + m_e/m_h}$$
$$\times \frac{\exp\left(-\frac{h\nu - E_g}{kT}\right)}{1 + \exp\left(\frac{E_F - E_e^i - E^{ij}}{kT}\right)} \Theta(E^{ij}/kT), \qquad (10)$$

где E_e^i — энергия *i*-й подзоны размерного квантовая ДЭГ, $h\nu$ — энергия излучаемых фотонов,

$$E^{ij} = \frac{h\nu - E_g - E_e^i - E_h^J}{1 + m_e/m_h},$$
 (11)

 E_h^j — энергия *j*-й дырочной подзоны размерного квантовая, Θ — тета-функция, W_{ij} — квадрат интеграла перекрытия огибающих электронной и дырочной волновых функций Ψ_e^i и Ψ_h^j .

Следует отметить, что в отличие от случая широких ям *B* в (10) зависит от d_a и d_s . Это связано с тем, что количество захваченных в КЯ электронов и дырок зависит как от размеров ямы, так и от величины изгиба зон и, соответственно, от концентрации n_{2d} ДЭГ [9]. Поэтому использование выражения (10), строго говоря, допустимо лишь для качественного сравнения интенсивностей пиков в спектре ФЛ в МЛГС с различными значениями d_a или d_s .

Обсуждение результатов

Поскольку интенсивность ФЛ в широких ямах была уже проанализирована, здесь будут обсуждены только результаты по КЯ.

Начнем с рассмотрения нелегированных ГС. Как видно из рис. 4, картина идеально прямоугольных КЯ не позволяет объяснить экспериментальную зависимость $h\nu_0(d_a)$ (кривая 1). Удовлетворительное согласие теории и эксперимента достигается, если учесть наличие изгиба зон φ_0 (рис. 4, кривая 3). Как показывает точный расчет, его величина в нелегированной ГС (при концентрации фоновой примеси ~ $1 \cdot 10^{14}$ см⁻³) приблизительно равна 20 мэВ. В этом случае энергия оптических переходов может быть аппроксимирована следующим выражением:

$$h\nu_0 = E_g + E_e^i + E_h^j - qFd_a,$$
 (12)

где $E_e^i + E_h^j \sim \frac{1+m_e/m_h}{d_a^2}$ — суммарная энергия нижних электронной и дырочной подзон и qFd_a — потенциал изгиба зон в пределах КЯ, где F — эффективное электрическое поле изгиба зон.

Поскольку отклонение формы КЯ от прямоугольной не велико, то, как показывает расчет, приблизительно выполняются правила отбора $W_{ij} \approx 1$ для i = j и $W_{ij} \approx 0$ для $i \neq j$ (и для тяжелых и легких дырок). Из-за отсутствия специального легирования заселенность всех

Рис. 4. Зависимости $E_1^e - E_1^{hh} - E_g$ от ширины нелегированной ямы (1 — самосогласованный расчет, 2 — эксперимент, 3 — расчет в модели прямоугольной ямы).

подзон i > 1 должна быть близка к нулю. Таким образом, в спектре ФЛ нелегированных ГС должна наблюдаться только одна линия, соответствующая оптическому переходу $E_e^1 \to E_{bh}^1$.

Для МЛГС имеет место значительный изгиб зон $\varphi_0 \approx 80 \div 120$ мэВ и, соответственно, сильное электрическое поле в КЯ. Это обусловливает снятие запрета на оптические переходы между различными электронными и дырочными подзонами. Высокая концентрация ДЭГ $n_{2d} \sim (6-10) \cdot 10^{11}$ см² обеспечивает заселенность 2-х нижних электронных подзон E_e^1 и E_e^2 в большинстве МЛГС. Расчет показал, что в дублетную структуру в спектре ФЛ МЛГС заметный вклад могут давать 6 типов отпических переходов между электронными подзонами E_e^1 и E_e^2 , с одной стороны, и дырочными подзонами E_h^1 , E_{lh}^1 и E_{hh}^2 , с другой стороны (E_{lh} и E_{hh} — соответственно подзоны легких и тяжелых дырок). Причем вклады каждого из них зависят от d_a и d_s .

Основной вклад в низкоэнергетический компонент дублета $h\nu$ вносят $E_e^1 \to E_{hh}^1$ оптический переход, а также переходы $E_e^1 \to E_{lh}^1$ и $E_e^1 \to E_{hh}^2$.

Вклады в высокоэнергетический пик при $(h\nu_2)$ вносят переходы $E_e^2 \to E_{hh}^1$ и $E_e^2 \to E_{hh}^2$, причем вклад последнего снижается при уменьшении d_a . Следует отметить, что пик I_2 должен проявляться только тогда, когда подзона E_e^2 заметно заселена электронами, т.е. когда уровень Ферми E_F расположен или выше E_e^2 или чуть ниже (так, чтобы оптическая накачка обеспечивала ее заселенность).

На рис. 2 приведены экспериментальные и расчетные спектры ФЛ для $d_a = 20$ нм. Из их сравнения следует,

что теоретическая модель по крайней мере качественно объясняет форму спектров $\Phi \Pi$, включая спектральное положение компонентов дублета, соотношение их интенсивностей и характер их изменения при уменьшении d_s .

На рис. 5 приведены расчетные зависимости от d_s энергий и квадратов интегралов перекрытия для различных оптических переходов. В соответствии с экспериментом здесь имеет место сдвиг компонентов дублета к меньшим $h\nu$ при снижении d_s . Это обусловлено увеличением изгиба зон (из-за увеличения концентрации ДЭГ n_{2d}), приводящего к снижению эффективных энергетических щелей между электронными и дырочными подзонами. Теория также объясняет уменьшение I₁ и возрастание I_2 , и, соответственно, увеличение отношения I_2/I_1 при снижении d_s. Уменьшение I₁ в этом случае обусловлено уменьшением интеграла перекрытия волновой функции основного (Ψ^{1}_{e}) состояния ДЭГ с дырочными волновыми функциями из-за сужения и "заострения" нижней части квазитреугольной ямы с ДЭГ, приводящих к уменьшению протяженности $\Psi_{e}^{1}(z)$ вдоль *z*-направления. Что касается увеличения интенсивности I2, то оно обусловлено увеличением заселенности E_e^2 из-за увеличения n_{2d} . В то же время, из-за достаточно большой протяженности волновой фукнции $\Psi_{e}^{2}(z)$, ее интегралы перекрытия с дырочными волновыми функциями слабо зависят от d_s.

На рис. 6 представлены теоретические зависимости энергий оптических переходов и соответствующих интегралов перекрытия W_{ij} от расстояния между гетеробарьерами d_a .

Согласно этим результатам, за наблюдаемое повышение интенсивности пика I_1 при уменьшении d_a ответственно увеличение интеграла перекрытия волновой

Рис. 5. Зависимости $E_i^e - E_j^h - E_g$ (сплошные линии) и квадратов интегралов перекрытия (штриховые) от ширины ямы (*I* — переход 1e-1hh, 2-1e-2hh, 3-2e-1hh, 4-2e-1lh) для $d_s = 10$ нм.

Физика и техника полупроводников, 1997, том 31, № 11

Рис. 6. Зависимости $E_i^e - E_j^h - E_g$ (сплошные линии) и квадратов интегралов перекрытия (штриховые) от толщины спейсерслоя (1 — переход 1e-1hh, 2 — 1e-2hh, 3 — 2e-1hh, 4 — 2e-1lh) для $d_a = 20$ нм.

фукнции Ψ_e^1 с волновыми функциями нижних подзон тяжелых и легких дырок. Происходящее при этом уменьшение интенсивности пика I_2 следует связывать со снижением заселенности подзоны E_e^2 , поскольку соответствующие интегралы перекрытия слабо зависит от d_a . Теория в согласии с экспериментом (рис. 6) предсказывает увеличение энергий всех исследуемых оптических переходов при уменьшении d_a , причем для пика $h\nu_2$ предсказывается более сильный сдвиг по сравнению с пиком $h\nu_1$. Это приводит к увеличению спектрального расщепления дублета $h\Delta\nu_{12} = h\nu_2 - h\nu_1$. Быстрое повышение энергии E_e^2 относительно энергии Ферми E_F обусловливает уменьшение заселенности этой подзоны при снижении d_a .

Представленные результаты демонстрируют отчетливые различия в поведении волновых функций ДЭГ подзон E_{e}^{1} и E_{e}^{2} . Более слабая зависимость от d_{a} интегралов перекрытия для оптических переходов из подзоны E_e^2 по сравнению с переходами из подзоны E_e^1 и обратная ситуация для зависимостей от d_a энергий этих подзон обусловлены различиями в протяженности волновых фукнций $\Psi_{e}^{2}(z)$ и $\Psi_{e}^{1}(z)$ вдоль *z*-направления. Из полученных результатов следует, что пространственная протяженность $\Psi_{e}^{1}(z)$ составляет около $12 \div 15$ нм, тогда как для $\Psi_{e}^{2}(z)$ она может быть оценена ~ 30 нм. Малая протяженность $\Psi_e^1(z)$ и обусловливает достаточно слабое влияние приближения второго гетеробарьера (при $d_a \ge 15$ нм) на энергию подзоны E_e^1 , с одной стороны, но сильное его влияние на величину интеграла перекрытия $\Psi^{1}_{e}(z)$ с дырочными волновыми функциями, с другой стороны. В то же время приближение 2-го гетеробарьера

Физика и техника полупроводников, 1997, том 31, № 11

оказывает существенное влияние на более протяженное состояние, описываемое волновой фукнцией $\Psi_e^2(z)$, повышая его энергию E_e^2 и соответственно уменьшая его заселенность.

В связи с этим измерения зависимости $I_1(d_a)$ могут быть использованы для экспериментальной оценки пространственной протяженности волновой функции $\Psi_e^1(z)$, а измерения I_2 — для оценки заселенности подзоны E_2^2 . Последнее позволяет применять метод ФЛ для исследования распределения электронов по двумерным подзонам (обычно это делается путем низкотемпературных измерений Шубникова–де-Гааза), причем даже при достаточно высоких температурах.

В заключение отметим, что в спектрах ФЛ двухбарьерных МЛГС с уменьшением расстояния между гетеробарьерами d_a обнаруживается переход от ФЛ трехмерных носителей к ФЛ с участием ДЭГ. Вблизи $d_a \approx 40$ нм линия в спектре ФЛ при $h\nu_0$, соответствующая межзонной рекомбинации трехмерных электронов и дырок, исчезает и вместо нее возникает новая дублетная структура с компонентами при $h\nu_1$ и $h\nu_2$. Проведены экспериментальные исследования этой ФЛ в МЛГС с различными значениями расстояния d_a и толщины спейсер-слоя d_s , выполнен теоретический анализ экспериментальных данных на основе самосогласованного решения уравнений Шредингера и Пуассона.

Выяснено, что дублетная структура в спектре ФЛ обусловлена оптическими переходами между двумя наинизшими подзонами с ДЭГ E_e^1 и E_e^2 и дырочными подзонами E_{hh}^1 , E_{lh}^1 и E_{hh}^2 . Относительные вклады каждого из переходов зависят от d_a и d_s . Наблюдаемое увеличение отношения интенсивностей компонентов дублета I_2/I_1 при уменьшении d_s обусловлено увеличением заселенности подзоны E_e^2 , с одной стороны, и снижением вероятности оптических переходов из подзоны E_e^1 , с другой стороны. Происходящее при этом увеличение изгиба зон обусловливает сдвиг всех оптических переходов в сторону меньших $h\nu$ за счет снижения эффективной межзонной щели.

Выяснено, что уменьшение расстояния d_s различным образом влияет на спектральное положение и интенсивности компонентов дублета в спектре ФЛ. Для пика $h\nu_2$ наблюдается значительно больший сдвиг в сторону больших $h\nu$, чем для пика $h\nu_1$. При этом интенсивность первого из них уменьшается, а второго — увеличивается. Это обусловлено существенными различиями в пространственной протяженности волновых функций $\Psi_e^1(z)$ и $\Psi_e^2(z)$, которые и приводят к различным зависимостям от d_a энергий этих подзон, их заселенностей и интегралов перекрытия с дырочными волновыми функциями.

Полученные в работе результаты представляют несомненный интерес как для понимания явлений размерного квантования в ДЭГ, так и для разработки эффективных методов диагностики его параметров.

Данная работа выполнена при финансовой поддержке Министерства науки РФ в рамках програмы "Физика твердотельных наноструктур".

Список литературы

- Y.K. Yuan, K. Mohammed, M.A.A. Pudensi., J.L. Mezz. Appl. Phys. Lett., 45, 739 (1984).
- [2] Ж.И. Алфёров, А.М. Васильев, П.С. Копьев. Письма ЖЭТФ, 43, 520 (1986).
- [3] П.Д. Алтухов, А.А. Бакун, Б.К. Медведев, В.Г. Мокеров, А.А. Рогачев, Г.П. Рубцов. ФТП, 21, 449 (1987).
- [4] I.V. Kukushkin, K.V. Klitzing, K. Ploog. Phys. Rev. B, 37, 8509 (1988).
- [5] S.K. Lyo, E.D. Jones. Phys. Rev. B, 38, 4113 (1988).
- [6] H.J. Polland, K. Leo, K. Rother, K. Ploog. Phys. Rev. B, 38, 7635 (1988).
- [7] Теория неоднородного электронного газа, под ред. С. Лудквиста, Н. Марча (М., Мир, 1987).
- [8] В.Э. Каминский. ФТП, 23, 662 (1989).
- [9] В.А. Соловьев, И.Н. Яссиевич, В.М. Чистяков. ФТП, 29, 1264 (1985).

Редактор В.В. Чалдышев

Optical spectroscopy of two-dimensional electron state in modulation doped *N*-AlGaAs/GaAs heterostructures

V.G. Mokerov, V.E. Kaminsky, A.V. Hook, Yu.V. Fedorov, Yu.V. Khabarov

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia

Abstract The 77 K photoluminescence (PL) spectra associated with the two dimensional electron gas in the modulation doped *N*-AlGaAs/GaAs heterostructures with the different thickness of the undoped spacer layer d_s have been investigated. All the samples had the undoped superlattice (SL) buffer layer (as the second heterobarrier) located at the distance d_a below the "main" heterobarrier. The theoretical analysis of the experimental data based on the self-consistent solution of the Poisson and Schrödinger equation is performed.

In the case of 13 nm $\leq d_a \leq$ 40 nm, the PL-spectra are presented by the two lines at the photon energies of $h\nu = h\nu_1$ and $h\nu = h\nu_2$ ($h\nu_2 > h\nu_1$) with intensities of I_1 and I_2 , respectively. This doublet structure is associated with optical transitions between the lowest electron subbands E_e^1, E_e^2 and the lowest both heavy E_{hh}^1 , E_{hh}^2 and light holes E_{lh}^1 subbands. It was shown that the increase of the I_2/I_1 intensity ratio with the reduction of d_s is caused by the increase of the population of the E_e^2 subbands and the reduction of the probability of the optical transitions assosiated with the E_e^1 subbands. The low energy shift of both the PL-lines in this case is associated with the increase of the band bending.

It was shown that the change of the distance d_a in different ways influences the intensities I_1 , I_2 and the spectral positions $h\nu_2$, $h\nu_1$ of the different doublet components. This result is explained by the essential differences in the spatial extentions of the $\Psi_e^1(z)$ and $\Psi_e^2(z)$ electron wave functions.