Электролюминесценция в разъединенной гетероструктуре *p*-GalnAsSb/*p*-InAs при гелиевых температурах

© Н.Л. Баженов, Г.Г. Зегря, В.И. Иванов-Омский, М.П. Михайлова, М.Ю. Михайлов, К.Д. Моисеев В.А. Смирнов, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 26 марта 1997 г. Принята к печати 1 апреля 1997 г.)

Исследована электролюминесценция в разъединенной одиночной гетероструктуре II типа *p*-GaInAsSb/*p*-InAs при $T = 4.2 \div 77$ К. Показано, что при понижении температуры ниже T = 77 К две полосы люминесценции с энергиями максимумов 311 мэВ (полоса *A*) и 384 мэВ (полоса *B*) сдвигаются в сторону больших энергий, причем при T = 4.2 К коротковолновая полоса расщепляется на две полосы B_1 и B_2 . Результаты объясняются в рамках модели, учитывающей рекомбинацию электронов из зоны проводимости на акцепторный уровень в InAs, а также рекомбинацией электронов и дырок, локализованных в самосогласованных квантовых ямах по разные стороны от гетерограницы.

Введение

Недавно была обнаружена и исследована электролюминесценция (ЭЛ) в одиночном разъединенном гетеропереходе II типа *p*-GaInAsSb/*p*-InAs при T = 77 K [1]. В этой же работе был выполнен качественный анализ механизма ЭЛ в такой структуре. Было показано, что механизм ЭЛ в рассматриваемой *p*-*p*-гетероструктуре обусловлен рекомбинацией электронов и дырок, локализованных в самосогласованных квантовых ямах по разные стороны от гетерограницы. Однако вопрос о том, определяется ли форма потенциальных барьеров и самосогласованных квантовых ям на гетерогранице непосредственно технологией изготовления гетероструктуры или она зависит также от величины приложенного внешнего смещения, не до конца понятен. В этой связи особенно полезными представляются исследования электролюминесценции в импульсном режиме, так как в этом случае имеется возможность не только в более широком диапазоне изменять ток, протекающий через гетеропереход, но и оценить характерные времена излучательных процессов. В работе [2] была исследована излучательная рекомбинация в разъединенной *p*-*p*-гетероструктуре II типа при импульсном возбуждении при температуре жидкого азота. Было показано, что в спектрах люминесценции наблюдаются две полосы излучения с максимумами, соответствующими энергиям 384 и 311 мэВ, полушириной 18 ÷ 19 мэВ, и оценены времена излучательной и безызлучательной рекомбинации на гетерогранице II типа, которые составили $\tau_R \simeq 2 \cdot 10^{-7}$ с и $\tau_{A2} = (0.5 \div 1.4) \cdot 10^{-7}$ с соответственно.

Цель настоящей работы состояла в исследовании электролюминесценции в разъединенной гетероструктуре *p*-GaInAsSb/*p*-InAs в импульсном режиме при температуре жидкого гелия. Экспериментальные исследования были выполнены при различных токах и различных положениях измерительного строба относительно импульса тока.

Методика эксперимента и образцы

Одиночные гетероструктуры *p*-GaInAsSb/*p*-InAs были получены методом жидкофазной эпитаксии. Технология их изготовления и методика измерений подробно описаны ранее [2,3]. Подложка для такой структуры легировалась Zn до концентраций порядка $5 \cdot 10^{16}$ см⁻³. Эпитаксиальный широкозонный слой твердого раствора Ga_{1-x}In_xAs_ySb_{1-y} (x = 0.17, y = 0.22) также легировался Zn до концентрации $p = 10^{18}$ см⁻³.

Экспериментальные результаты и обсуждение

На рис. 1 приведены спектры люминесценции исследованной структуры, когда отрицательный потенциал приложен к узкозонному полупроводнику *p*-InAs (обратное смещение), при четырех температурах от 4.2 до 100 К. При T = 77 К в спектрах наблюдались две линии с максимумами при энергиях фотонов 311 мэВ (линия А) и 384 мэВ (линия В) соответственно. При понижении температуры до $T = 4.2 \,\mathrm{K}$ полоса A сужалась, причем ее максимум практически не смещался (энергия максимума 314 мэВ). Одновременно изменялась структура полосы В — она явно расщеплялась на две линии с энергиями максимумов 371 мэВ (В1 и 400 мэВ (B_2) , при этом пложение полосы B_1 практически совпадало с положением полосы *В* при $T = 77 \, \text{K}$. Из сравнения со спектром, снятым при промежуточной температуре $T = 15 \,\mathrm{K}$, видно, что при повышении температуры от гелиевой относительная интенсивность полосы В₁ возрастает, но ее положение практически не изменяется и совпадает с положением полосы В при $T = 77 \,\mathrm{K}$, а полоса B_2 смещается в сторону меньших энергий фотонов и, расширяясь, поглощает полосу B_1 .

Таким образом, положение двух длинноволновых полос практически не зависит от температуры, а коротковолновая полоса при понижении температуры сдви-

Рис. 1. Спектры электролюминесценции (EL) при T = 4.2(1), 15(2), 77(3) и 100(4) К.

гается в сторону бо́льших энергий. Температурный коэффициент сдвига равен $-2.2 \cdot 10^{-4}$ эВ/К, что близко к величине соответствующего температурного коэффициента изменения ширины запрещенной зоны в InAs $-2.8 \cdot 10^{-4}$ эВ/К [4].

Исследование показало, что вольт-амперная характеристика исследуемой структуры при понижении температуры от T = 77 до 4.2 К изменяется слабо. Это свидетельствует о туннельном характере протекания тока. Отметим, что при прямом смещении, когда положительный потенциал приложен к более узкозонному полупроводнику *p*-InAs, полоса *A* не наблюдается.

На рис. 2 представлены спектры полос B_1 и B_2 исследованной структуры как для случая обратного смещения, так и для случая прямого смещения. Видно, что форма спектра при обеих полярностях приложенного смещения подобна. Положение полос B_1 и B_2 практически совпадает. При увеличении интенсивности возбуждения интенсивность линий излучения линейно возрастает, но их энергетическое положение остается неизменным.

При прямом смещении полоса B_2 симметрична и имеет гауссову форму. В случае обратного смещения полоса B_2 несимметрична. Ее коротковолновый край по-прежнему описывается гауссовым распределением, причем с теми же параметрами, что и при прямом смещении, однако длинноволновый край имеет лоренцеву форму. Тем не менее можно сделать вывод, что вид спектра исследованной гетероструктуры слабо зависит не только от степени возбуждения, но и от полярности тока. Это свидетельствует в пользу того, что зонная структура определяется в первую очередь технологией изготовления гетероперехода, а не приложенным смеще-

Рис. 2. Спектры электролюминесценции (EL) при T = 4.2 К при обратном (1) и прямом (2)смещениях.

нием. Кроме того рекомбинация носителей при обеих полярностях смещения происходит в одной и той же области гетероструктуры.

Природа полосы B_2 может быть лучше понята из схематичной зонной диаграммы, представленной на рис. 3 (E_F — уровень Ферми). На рисунке гетеропереход изображен при обратном смещении. В этом случае становится эффективным туннелирование дырок из валентной зоны твердого раствора в валентную зону InAs. Протуннелировавшая дырка теряет энергию за счет оже-процесса, который сопровождается возбуждением неравновесного электрона из валентной зоны InAs в зону проводимости и переходом дырки к потолку валентной зоны. Электрон в зоне проводимости излучательно рекомбинирует на акцепторный уровень, что приводит к появлению в спектре ЭЛ полосы B_2 . Поскольку легирующей примесью как

Рис. 3. Зонная диаграмма исследованной гетероструктуры при обратном смещении.

Рис. 4. Спектры электролюминесценции (EL) при обратном смещении при T = 4.2 K, снятые спустя промежуток времени Δt после выключения тока через гетеропереход. Δt , мкс: I = 0, 2 = 4, 3 = 8, 4 = 12.

подложки, так и слоя является Zn, формирующий в InAs акцепторный уровень с энергией 25 мэВ [5], а ширина запрещенной зоны InAs, определенная по измерению фотолюминесценции при T = 4.2 K, равна 423 мэВ, естественно предположить, что рекомбинация электронов происходит на акцепторный уровень, соответствующий цинку. При прямом смещении имеет место аналогичный процесс, однако туннелирование дырок происходит из валентной зоны InAs в валентную зону GaInAsSb. Кроме того, при прямом смещении, превышающем контактную разность потенциалов, (что достигалось в эксперименте) может происходить туннелирование электронов из валентной зоны GaInAsSb в зону проводимости InAs и их рекомбинация с дырками. Отметим, что поскольку при обратном смещении энергетические зоны искривлены сильнее, чем при прямом смещении, а рекомбинация электрона происходит именно в области, где зоны имеют сильный наклон, следует ожидать, что длинноволновый край полосы ЭЛ в этом случае будет более пологим, чем коротковолоновый, из-за вклада рекомбинации, сопровождающейся туннелированием. Именно это и наблюдается в эксперименте.

В рамках нашей модели зонной диаграммы отсутствие зависимости положения полос ЭЛ от смещения можно объяснить следующим образом. На *p*-*p*-гетерогранице имеется квантовая яма, форма которой практически не зависит от величины и полярности приложенного смещения. При приложении смещения происходит заполнение локальных уровней в яме электронами, а следовательно, и их туннельная рекомбинация с дырками, что и приводит к появлению полос A и B₁.

На рис. 4 представлены спектры ЭЛ, характеризующие кинетику гашения люминесценции после окончания импульса тока длительностью 10 мкс через гетеропереход при обратном смещении. Видно, что после выключения тока возбужения интенсивность полос B_1 и B_2 уменьшается. Уменьшение в "e" раз происходит приблизительно за 8 мкс, что близко к времени релаксации интегральной люминесценции в таких структурах [3]. В целом это подтверждает предположение о том, что энергетическая структура гетерограницы в основном практически не зависит от приложенного напряжения. При этом скорость уменьшения интенсивности полос при сдвиге измерительного строба подтверждает, что оба соответствующих канала излучательной рекомбинации имеют общий источник неравновесных электронов.

Заключение

Таким образом, в настоящей работе исследованы спектры ЭЛ одиночной гетероструктуры *p*-GaInAsSb/*p*-InAs в импульсных электрических полях при $T = 4.2 \div 100$ К. Полученные экспериментальные данные позволили уточнить модель излучательной рекомбинации электронов, предложенную в работах [1,2]. Дополнительно к рекомбинации электронов, локализованных в самосогласованной квантовой яме на гетерогранице со стороны *p*-InAs, эта модель учитывает излучательные переходы электронов на акцепторный уровень в *p*-InAs.

Данная работа частично поддержана Российским фондом фундаментальных исследований, грант № 96-02-17841-а, а также Международной ассоциацией INTAS, грант № 94-0789.

Список литературы

- M.P. Mikhailova, G.G. Zegrya, K.D. Moiseev, Yu.P. Yakovlev. Sol. St. Electron., 40, 673 (1996).
- [2] Н.Л. Баженов, Г.Г. Зегря, М.П. Михайлова, К.Д. Моисеев, В.А. Смирнов, О.Ю. Соловьева, Ю.П. Яковлев. ФТП, 31, 658 (1977).
- [3] N.L. Bazhenov, G.G. Zegrya, V.I. Ivanov-Omskii, K.D. Moiseev, M.P. Mikhailova, V.A. Smirnov, Yu.P. Yakovlev. 23-rd Int. Symp. Compound Semiconductors (St. Petersburg, Russia, September 23–27) rep. 11.P2.37.
- [4] П.К. Баранский, В.П. Клочков, И.В. Потыкевич. Полупроводниковая электроника. Справочник (Киев, Наук. думка, 1975).
- [5] X. Gong, H. Kan, T. Yamagichi, I. Sazuki, M. Aoyama, M. Kumagawa, N.L. Rowell, A. Wang, R. Rinfret. JJAP, v. 33, 1740 (1994).

Редактор Л.В. Шаронова

Electroluminescence from type II broken-gap *p*-GalnAsSb/*p*-InAs heterojunction at helium temperatures

N.L. Bazhenov, G.G. Zegrya, V.I. Ivanov-Omskii, M.P. Mikhailova, M.Yu. Mikhailov, K.D. Moiseev, V.A. Smirnov, Yu.P. Yakovlev

A.F. loffe Phisicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Electroluminescence from the type II brokengap *p*-GaInAsSb/*p*-InAs single heterojunction was studied at $T = 4.2 \div 77$ K. Two bands with maximum energies of 311 meV (*A* band) and 384 meV (*B* band) observed at T = 77 K were shown to shift toward higher energies with decreasing temperature to 4.2 K, the short–wave band splitting into two subbands (B_1 and B_2). The results are discussed in the framework of the model taking into account band-to-acceptor recombination in InAs as well as radiative recombination of electrons and holes localized in the adjacent wells at both sides of the heterojunction.