Эффект вскипания дырок и особенности магнитосопротивления полумагнитного полупроводника Hg_{1-x}Mn_xTe_{1-y}Se_y

© Н.К. Леринман, П.Д. Марьянчук*, А.И. Пономарев, Л.Д. Сабирзянова, Н.Г. Шелушинина

Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

* Черновицкий государственный университет,

274012 Черновцы, Украина

(Получена 31 июля 1996 г. Принята к печати 25 февраля 1997 г.)

Исследованы гальваномагнитные эффекты в бесщелевых и узкощелевых полупроводниках $Hg_{1-x}Mn_xTe_{1-y}Se_y$ с x = 0.03-0.11, y = 0.01-0.10 ($-150 < \varepsilon_g < 190$) мэВ и с концентрацией акцепторов 5.4 · $10^{16} < N_A < 4.3 · <math>10^{18}$ см⁻³. В магнитных полях H = (5-50) кЭ и T = (1.3-4.2) К наблюдалось существенное (до 500 раз) увеличение концентрации дырок p = 1/eR, которое сопровождалось падением как продольного ρ_{zz} , так и поперечного ρ_{xx} магнитосопротивлений. Мы полагаем, что эффект "вскипания" дырок является следствием существования при H = 0 состояний связанного магнитных поляхон и делокализации носителей тока при разрушении этих состояний внешним магнитным полем. Аномальное соотношение продольного и поперечного магнитосопротивлений $\rho_{zz} > \rho_{xx}$, наблюдаемое при гелиевых температурах и в магнитных полях H > 10 кЭ, объясняется особенностями энергетического спектра валентной зоны полумагнитных полупроводников в квантующих магнитных полях.

1. Введение

В полумагнитных полупроводниках Hg_{1-x}Mn_xTe и Hg_{1-x}Mn_xSe обменное взаимодействие свободных электронов зон Г₆ или Г₈ с локализованными электронами незаполненной *d*-оболочки иона Mn²⁺ (*s*-*d*- или *p*-*d*-взаимодействие соответственно) приводит к существенной перестройке энергетического спектра носителей заряда в магнитном поле. В работе [1] нами представлены результаты исследования магнитных и кинетических свойств полумагнитного полупроводника Hg_{1-x}Mn_xTe_{1-v}Se_v с проводимостью дырочного типа по валентной зоне Г₈. В гальваномагнитных свойствах отчетливо проявляются эффекты, обусловленные влиянием обменного *p*-*d*-взаимодействия: эффект вскипания дырок в магнитном поле, связанный с ним эффект отрицательного магнитосопротивления, а также аномальное соотношение продольного и поперечного магнитосопротивлений. В данной работе мы провели более подробное изучение наблюдаемых эффектов, расширив при этом набор исследуемых образцов.

2. Экспериментальные результаты

Исследованы продольное ρ_{zz} и поперечное ρ_{xx} магнитосопротивления, а также коэффициент Холла *R* бесщелевых (x < 0.07) и узкощелевых (x > 0.07) кристаллов малоисследованного полумагнитного полупроводника Hg_{1-x}Mn_xTe_{1-y}Se_y в широкой области составов 0.03 < x < 0.11, $y = 0.01 \div 0.10$ при T = (1.3-300) К и в магнитных полях *H* до 60 кЭ. Параметры исследованных образцов приведены в табл. 1. Содержание Mn определялось с помощью измерений магнитной восприимчивости (см. [1]). Ширина запрещенной щели ε_g и содержание марганца *x* для узкощелевых кристаллов были оценены также по величине собственной концентрации электронов при T = 300 К. Разность концентраций и доноров $(N_A - N_D)$ определялась по значениям R в сильном магнитном поле $(H = 50 \text{ к}\Im)$ при T = 77 К. Все исследованные образцы являются образцами *p*-типа. В таблице приведены также характерные значения подвижности дырок μ_p при T = 1.4 К в магнитных полях $H \cong 10$ к \Im , где величина R(H) достигает максимума.

Известно, что в немагнитном полупроводнике $Hg_{1-x}Gd_xTe$ (с аналогичной структурой валентной зоны) перекрытие волновых функций дырок на соседних акцепторах приводит к переходу диэлектрик-металл (переход Мотта) при $N_A = N_M = 2 \cdot 10^{17} \text{ см}^{-3}$ [2]. По отношению к этому значению N_M исследованные образцы можно разделить на три характерные группы:

I $N_A < N_M$ образцы (1–3) $(N_A < 2 \cdot 10^{17} \text{ см}^{-3}),$ II $N_A > N_M$ образцы (4–9) $(N_A \sim 10^{18} \text{ см}^{-3}),$ III $N_A \gg N_M$ образцы (10–12) $(N_A > 3 \cdot 10^{18} \text{ см}^{-3}),$

На рис. 1,2 представлены зависимости продольного $\Delta \rho_{zz}$, поперечного $\Delta \rho_{xx}$ магнитосопротивлений и коэффициента Холла R от магнитного поля H для образца I (см. табл. 1) с минимальным содержанием примесей $(N_A - N_D) = 5.4 \cdot 10^{16} \text{ см}^{-3}$ для нескольких температур. Вид зависимостей R(H) при гелиевых температурах свидетельствует о том, что в процессе переноса участвуют два типа носителей: электроны и дырки. Электронный вклад в зависимость R(H), наблюдаемый в слабых магнитных полях в полупроводнике p-типа со щелью $\varepsilon_g > 100$ мэВ при T < 10 К, не может быть обусловлен зонными носителями. Такой аномальный электронный вклад неоднократно наблюдался в образцах $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$ с $x \approx 0.2$ [2]. По аналогии с $\text{Hg}_{1-x}\text{Cd}_x\text{Te}$ можно

№ группы	№ образца	у	x	ε_{g} , мэВ	$(N_A - N_D), 10^{17} { m cm}^{-3}$	μ_p , см $^2/\mathrm{B}\cdot\mathrm{c}$
Ι	1	0.01	0.095	165	0.54	4500
	2	0.05	0.11	190	1.3	2300
	3	0.10	0.09	150	1.6	2050
II	4	0.01	0.04	-150	13	800
	5	0.01	0.04	-120	9.3	1500
	6	0.01	0.05	-100	10	3100
	7	0.05	0.08	110	10	4400
	8	0.01	0.08	110	13	3800
	9	0.01	0.09	150	13	3600
III	10	0.10			31	75
	11	0.01	< 0.07	< 0	41	120
	12	0.10			43	50
			I I	1		1

Таблица 1. Параметры исследованных образцов Hg_{1-x}Mn_xTe_{1-y}Se_y

Примечание. Подвижность μ_p измерена при $H \approx 10$ кЭ, $T = (1.4 \div 1.7)$ К.

предположить, что в исследованных нами образцах существует непрерывный кластер *n*-типа, формирующийся вдоль границ дислокаций и шунтирующий проводимость объема *p*-типа при низких температурах в слабых магнитных полях [3]. Рост концентрации дырок с ростом поля (о чем речь будет позже), а также лоренцовское закручивание электронов (подвижность электронов $\mu_n \approx (10^4 - 10^5) \text{ см}^2/\text{B} \cdot \text{c}$) приводят к смене знака *R* при $H \approx 5$ кЭ. В полях H > 10 кЭ, где процессы переноса

полностью определяются дырками (рис. 1 и 2), наблюдается резкое падение величины коэффициента Холла и сопротивления: $R_{\rm max}/R(50 \text{ k}\Im) \approx 200; \rho_{\rm max}/\rho(50 \text{ k}\Im) \approx 10^3$ при T = 1.3 К.

На рис. 3,4 приведены зависимости $\Delta \rho_{zz}(H)$, $\Delta \rho_{xx}(H)$ и R(H) для узкощелевого образца 7 с промежуточным содержанием примесей $(N_A - N_D) = 10^{18} \text{ см}^{-3}$. Общий вид этих зависимостей аналогичен таким же зависимостям для образца 1. Различие между ними

Рис. 1. Зависимости продольного (*1*, *3*) и поперечного (*2*, *4*) магнитосопротивления $\Delta \rho / \rho_0$ от магнитного поля *H* для образца 1 (см. табл. 1) при *T*, K: *1*, *2* — 1.6; *3*, *4* — 4.2.

Рис. 2. Зависимость коэффициента Холла от магнитного поля для образца 1 при *T*, К: *I* — 1.6, *2* — 4.2, *3* — 12.

заключается только в величинах падения коэффициента Холла R и сопротивления ρ в полях H > 10 кЭ. Для образца 7 они значительно меньше: $R_{\text{max}}/R(50$ кЭ) ≈ 6 ; $\rho_{\text{max}}/\rho(50$ кЭ) ≈ 4 при T = 1.3 К. Из рис. 2 и 4 видно также, что при температурах (10–12) К коэффициент Холла R положителен и практически не зависит от H. Анализируя зависимости $\Delta \rho_{xx}(H)$ и $\Delta \rho_{zz}(H)$ для исследованных образцов (см. рис. 1 и 3), необходимо отметить необычное соотношение величин $\Delta \rho_{zz}$ и $\Delta \rho_{xx}$ в области дырочной проводимости: при T < 4.2 К и $H \ge 5$ кЭ ρ_{zz} становится существенно больше ρ_{xx} .

Для сильно легированных кристаллов с $N_A - N_D \approx (3-4) \cdot 10^{18} \, {\rm сm}^{-3}$ поведение кинетических коэффициентов при низких температурах полностью определяется дырками и с ростом магнитного поля изменяется слабо.

3. Обсуждение экспериментальных результатов

а. Эффект "вскипания" дырок. Наблюдаемое в полях H > (5-10) кЭ существенное убывание R(H) естественно связать с увеличением концентрации валентных дырок p при возрастании магнитного поля. Такой эффект вскипания дырок, обратный процессу вымораживания, наблюдался ранее в узкощелевых [4] и бесщелевых [5,6] кристаллах p-HgMnTe и объяснялся либо уменьшением энергии активации акцептора [7], либо разрушением

Рис. 3. Зависимости продольного (1, 3) и поперечного (2, 4) магнитосопротивления $\Delta \rho / \rho_0$ от магнитного поля *H* для образца 7 при *T*, K: *I*, 2 — 1.3; *3*, 4 — 4.2.

Рис. 4. Зависимость коэффициента Холла от магнитного поля для образца 7 при *T*, К: *I* — 1.3, *2* — 4.2, *3* — 10.

состояний связанного магнитного полярона [8] в магнитном поле.

На рис. 5 представлены зависимости p(H) при T = 1.6 К для образцов 1 и 2. Видим, что вплоть до $H \approx 20$ кЭ наблюдаемую зависимость можно описать соотношением $p(H) \sim \exp[-E_A(H)/kT]$, где

$$E_A(H) = E_A^0 - \gamma H \tag{1}$$

с $E_A^0 = 1.5$ мэВ, $\gamma = 2.9 \cdot 10^{-2}$ мэВ/кЭ для образца 1 и $E_A^0 = 2$ мэВ, $\gamma = 4.8 \cdot 10^{-2}$ мэВ/кЭ для образца 2. Экстраполируя найденную зависимость к H = 0, находим оценку для концентрации дырок в отсутствие магнитного поля: при T = 1.6 К $p(H = 0) = 1.1 \cdot 10^{14}$ см⁻³ для образца 1 и $p(H = 0) = 3.8 \cdot 10^{13}$ см⁻³ для образца 2. На том же рисунке приведены зависимости от H величин $\sigma_{zz} = 1/\rho_{zz}$ и $\sigma_{\perp} = 1/\rho_{xx}$ для образца 2 имеют аналогичный вид). Видим, что на кривых $\sigma_{zz}(H)$ и $\sigma_{\perp}(H)$ также имеется активационный участок при H < 20 кЭ. Сравнивая зависимости p(H) и $\sigma_{zz}(H)$, $\sigma_{\perp}(H)$, можно сделать вывод о том, что наблюдаемое резкое падение сопротивления в полях H > 5 кЭ при гелиевых температурах (рис. 1, 3) обусловлено главным образом эффектом вскипания дырок.

Сопоставим выражение (1) с теоретическим результатом, предсказывающим уменьшение энергии активации в магнитном поле, справедливым для широкощелевых

Рис. 5. Зависимость концентрации дырок p от магнитного поля H при T = 1.6 К для образцов 1 (1) и 2 (2). На вставке — зависимости поперечной $\sigma_{\perp} = 1/\rho_{xx}$ (3) и продольной $\sigma_{zz} = 1/\rho_{zz}$ (4) проводимостей от магнитного поля для образца 2 при T = 1.6 К.

полупроводников [9]:

$$E_A = E_A^0 - \alpha B, \tag{2}$$

где

$$B = -(1/6) N_0 \beta \langle S_z \rangle \tag{3}$$

— обменная добавка к энергии дырок зоны Γ_8 . В соотношении (3) $\langle S_z \rangle$ — средняя величина *z*-компоненты спина иона Mn ($z \parallel \mathbf{H}$), $N_0\beta$ — обменный интеграл. В достаточно слабых магнитных полях

$$\langle S_z \rangle = S_0 \frac{(S+1)g_{\mathrm{Mn}}\mu_B H}{3k(T+T_0)},\tag{4}$$

где S = 5/2, $g_{\rm Mn} = 2$, μ_B — магнетон Бора, S_0 и T_0 — эффективные параметры, учитывающие обменное взаимодействие спинов Mn между собой, и для коэффициента γ в (1) получаем

$$\gamma_{th} = \alpha \frac{1}{6} x N_0 \beta \frac{S_0(S+1)g_{\rm Mn}\mu_B}{3k(T+T_0)}.$$
 (5)

Используя значения параметров $N_0\beta = 1.4$ эВ, $S_0 = 1.02, T_0 = 9.9$ К (такие же, как для $Hg_{1-x}Mn_x$ Te с x = 0.1 [10]), при T = 1.6 К находим $\gamma_{th} = 0.25\alpha$ мэВ/кЭ. Сопоставление γ_{th} с экспериментально найденными значениями γ дает оценку $\alpha = (0.12 - 0.2)$, что существенно меньше теоретического значения $\alpha = 0.75$ для Hg_{1-x}Mn_xTe с $x \approx 0.1$ [9].

Таким образом, в модели изолированного акцептора удовлетворительного описания эффекта вскипания дырок в исследованных образцах достичь не удается. Отметим также, что найденные значения энергии активации в отсутствие магнитного поля $E_A^0 = (1.5-2)$ мэВ заметно меньше теоретической оценки для энергии связи изолированного акцептора $E_A^0 = 6$ мэВ [9]. Значения E_A^0 , близкие к этой величине, в образцах HgCdTe peально наблюдались лишь при $N_A < 10^{16} \, {
m cm^{-3}}$ [11]. В исследованных нами образцах критерий слабого легирования $N_A \ll N_M$ не выполнен даже для образцов 1–3 с наименьшими концентрациями примесей. В случае промежуточного легирования при $N_A \lesssim N_M$ перекрытием волновых функций соседних акцепторов пренебречь нельзя и наблюдаемая энергия активации может быть существенно меньше E_A^0 .

На рис. 6 представлены зависимости p(H) в полях H > 10 кЭ при T = (1.4-1.7) для образцов 4–9 с $N_A \approx 10^{18}$ см⁻³. Видим, что и в этих образцах наблюдается существенная зависимость концентрации дырок от H, хотя и более слабая, чем в образцах 1 и 2. При $N_A > N_M$, когда связанное состояние дырки на акцепторе за счет кулоновского взаимодействия отсутствует, рост p(H) невозможно объяснить убыванием исходной энер-

Рис. 6. Зависимости концентрации дырок *p* от магнитного поля *H* при *T* = (1.4÷1.7) К. Цифры у кривых соответствуют номерам образцов в таблице.

гии активации. Поэтому кажется необходимым использовать представление о состояниях связанного магнитного полярона [5]. Под связанным магнитным поляроном понимается связанное состояние дырки в полумагнитном полупроводнике, которое формируется благодаря обменному взаимодействию *p*-*d*-типа между дыркой на акцепторе и окружающими его спинами ионов Mn [8]. Добавление магнитного (обменного) взаимодействия к электростатическому может создать условия для локализации носителей даже при $N_A > N_M$. Поляронные эффекты могут играть существенную или даже определяющую роль и в случае промежуточно легированных образцов с $N_A < N_M$ (образцы 1–3). Действительно, оценка поляронного вклада в энергию связи изолированного акцептора, согласно теории Дитла и Спалека [8], для исследованных образцов с $x \approx 0.1$ при T = 1.6 К дает $\Delta E_A \approx 4$ мэВ, что сравнимо с кулоновской энергией связи изолированного акцептора $E_A^0 = 6$ мэВ.

Благодаря p-d-обмену поляризация облака спинов Mn (в пределах радиуса Бора) $\langle S_z \rangle_{\text{loc}}$ является ненулевой даже при H = 0, когда дальний порядок во всей спиновой подсистеме отсутствует ($\langle S_z \rangle = 0$). При включении внешнего магнитного поля происходит поляризация всех спинов Mn, что приводит к росту величины $\langle S_z \rangle$ и уменьшению разницы $\langle S_z \rangle - \langle S_z \rangle_{\text{loc}}$, т.е. к постепенному разрушению состояний связанного магнитного полярона. Процесс делокализации носителей при разрушении поляронных состояний в магнитном поле и приводит к эффекту вскипания дырок.

В образцах с $N_A > 3 \cdot 10^{18}$ см⁻³ (образцы 10–12) перекрытие волновых функций на соседних акцепторах настолько велико, что локализации за счет обменных эффектов не происходит и концентрация дырок практически не зависит ни от магнитного поля, ни от температуры.

Итак, исследование образцов полумагнитного полупроводника *p*-HgMnTeSe для широкого интервала концентраций акцепторов N_A позволило установить, что степень роста концентрации *p* в процессе вскипания дырок в магнитном поле тем существенней, чем меньше концентрация акцепторов по отношению к концентрации перехода Мотта N_M в немагнитном полупроводнике. Эта эмпирическая закономерность отражена в табл. 2, где мы использовали также наши данные для 8 бесщелевых образцов HgMnTe с $N_A = (1-2) \cdot 10^{17}$ см⁻³ [6].

Полагая, что отсутствие зависимости p от H и от T соответствует полной делокализации дырок, можно утверждать, что в исследованном полумагнитном полупроводнике переход диэлектрик-металл происходит при $N_A = N_M^* > 3 \cdot 10^{18} \text{ см}^{-3}$. Таким образом, влияние обменного взаимодействия дырок с подсистемой спинов ионов Mn^{2+} приводит к усилению эффектов локализации и к увеличению на порядок концентрации перехода Мотта по сравнению с немагнитным полупроводником. Необходимо отметить также, что наблюдаемое существенное различие в величинах $R_{\text{max}}/R(50 \text{ кЭ})$ для образцов HgMnTeSe и HgMnTe с близкими значениями $N_A \approx 10^{17} \text{ см}^{-3}$ (1-я и 2-я строки в табл. 2) скорее всего связано с естественным усилением эффекта вскипания

Таблица 2.	Величина эффекта вскипания	я дырок в интервале	$e \; 10 \lesssim H \lesssim 50$ i	кЭ для различны:	х групп образцов
------------	----------------------------	---------------------	------------------------------------	------------------	------------------

Образец	x	$(N_A - N_D), 10^{17} { m cm}^{-3}$	$R_{\rm max}/R$ (50 кЭ)
$Hg_{1-x}Mn_xTe_{1-y}Se_y$ $Hg_{1-x}Mn_xTe$ $Hg_{1-x}Mn_xTe_{1-y}Se_y$ $Hg_{1-x}Mn_xTe_{1-y}Se_y$	$\begin{array}{c} 0.09 \div 0.11 \\ 0.05 \div 0.07 \\ 0.03 \div 0.095 \\ < 0.07 \end{array}$	$ \begin{array}{r} 0.5 \div 1.5 \\ 1 \div 2 \\ 9 \div 13 \\ 30 \div 40 \end{array} $	$200 \div 500 \\ 10 \div 20 \\ 3 \div 5 \\ 1$

Примечание. Данные последней колонки получены при T = (1.4 ÷ 1.7) K, R_{max} — максимальное значение R(H) в области дырочной проводимости при H ≈ 10 кЭ.

дырок при увеличении *x*, т.е. при увеличении обменной добавки к энергии дырок.

б. Аномальная анизотропия магнитосопротивления. Известно, что для полупроводников со сферическисимметричной зоной и изотропным рассеянием продольное магнитосопротивление не изменяется с магнитным полем в классической области магнитных полей. В области квантующих полей ρ_{zz} зависит от H, но для обычных полупроводников отношение ρ_{zz}/ρ_{xx} всегда остается меньше единицы как для короткодействующего, так и для дальнодействующего примесного потенциала [12]. В полумагнитных полупроводниках HgMnTe в широкой области магнитных полей наблюдалась инверсия этого соотношения: продольное магнитосопротивление становится в несколько раз больше поперечного [4-6]. В исследованных нами образцах $Hg_{1-x}Mn_xTe_{1-y}Se_y$ также наблюдается аномальная анизотропия магнитосопротивления: из рис. 7 ясно видно, что в полях H > 10 к $\Im \rho_{zz}$ становится больше ho_{xx} и отношение $ho_{zz}/
ho_{xx}$ существенно возрастает по мере роста H и содержания Mn x, а также при понижении температуры, достигая значений порядка 10.

Обменное p-d-взаимодействие в магнитном поле вызывает зеемановское расщепление четырехкратно вырожденного состояния Γ_8 на подзоны с проекциями полного момента $J_z = \pm 1/2$ и ± 3.2 [13]. Положение вершин этих подзон при отсчете от вершины зоны Γ_8 при H = 0 соответствует энергиям $\varepsilon = \pm B$ и $\pm 3B$, где обменная добавка B определена соотношением (3). Так как обменный параметр $\beta > 0$ и, следовательно, B < 0, высшей зоной является валентная зона с $J_z = -3/2$, закон дисперсии которой вблизи точки Γ имеет вид (H || z)

$$\varepsilon_{-3/2}(k) = -\frac{\hbar^2}{2} \left[\left(\frac{3}{4m_l} + \frac{1}{4m_h} \right) k_{\perp}^2 + \frac{k_z^2}{m_h} \right] - 3B, \quad (6)$$

где m_l и m_h — массы легкой и тяжелой дырок соответственно, k_{\perp} — компонента волнового перпендикулярная магнитному полю. Так как $m_l < m_h$, изоэнергетическая поверхность представляет собой эллипсоид вращения, вытянутый вдоль направления магнитного поля.

В узкощелевых и бесщелевых полумагнитных полупроводниках с малыми эффективными массами легкой дырки ($m_l \sim |\varepsilon_g|$) следует также принимать во внимание непосредственное влияние магнитного поля на

орбитальное движение носителей заряда (квантование Ландау) [14]. Для обычных значений параметров высшим уровнем Ландау валентной зоны как в бесщелевом, так и в узкощелевом HgMnTe является уровень b_{-1} (в обозначениях Пиджина–Брауна [15]), энергию которого можно представить в аналитическом виде

$$\varepsilon_{b_{-1}} = -\frac{\hbar\omega_{\perp}}{2} + \frac{3}{2}\kappa\hbar\omega_0 - 3B - \frac{\hbar^2k_z^2}{2m_h}.$$
 (7)

Здесь ω_{\perp} — циклотронная частота, соответствующая поперечной эффективной массе $m_{\perp} \approx (4/3)m_l$, ω_0 — циклотронная частота свободного электрона, κ — параметр Латтинджера, определяющий величину *g*-фактора носителей зоны Γ_8 в отсутствие обменных эффектов.

Из выражений (6), (7) (и вида волновой функции [14]) следует, что уровень b_{-1} есть первый уровень Ландау, отщепленный от зоны $\varepsilon_{-3/2}(\mathbf{k})$. Из (7) видно, что зависимость энергии $\varepsilon_{b_{-1}}(\mathbf{k})$ от компоненты k_z является параболической и определяется эффективной массой тяжелой дырки *m_h*. Из численных расчетов для бесщелевых [16] и узкощелевых [17] полупроводников HgMnTe следует, что энергетический зазор $\Delta \varepsilon$ между вершинами подзоны b_{-1} и ближайшей к ней подзоны a_{-1} есть величина порядка $B, \Delta \varepsilon \approx B.$ Зазоры между вершинами для следующих подзон Ландау $(a_{-1}, b_1, b_2$ и т.д.) намного меньше и уменьшаются по мере роста номера подзоны, оставаясь величиной порядка циклотронной энергии тяжелой дырки $\hbar \omega_h$ ($\omega_h = eH/m_hc$). Для типичных значений параметров HgMnTe в широком интервале магнитных полей $\hbar\omega_h \ll B$, поэтому спектр валентной зоны полумагнитного полупроводника в квантующих магнитных полях оказывается своеобразным: имеется существенный отрыв верхнего уровня b_{-1} от совокупности остальных близко расположенных уровней.

Для такого вида спектра волновая функция дырки на акцепторе в магнитном поле также изменяется необычным образом: радиус волновой функции a_{\perp} в направлении, перпендикулярном H, увеличивается с ростом поля [7]. В области прыжковой проводимости по примесям увеличение степени перекрытия акцепторных волновых функций с ростом H должно приводить к падению сопротивления, при этом эффект оказывается максимальным для поперечного и минимальным для продольного магнитосопротивления. Такое убывание $\rho_{xx}(H)$ и $\rho_{zz}(H)$ при аномальном соотношении между ними

Рис. 7. Зависимость отношения ρ_{zz}/ρ_{xx} от магнитного поля H для исследованных образцов (см. табл. 1) с номерами: a - № 5 с x = 0.05 (I, 2) и № 7 с x = 0.08 (I' и 2') при T, K: I, I' - 1.4, 2, 2' - 4.2; b - № 3 с x = 0.09 при T, K: I - 1.8; 2 - 4.2; c - № 1 с x = 0.095 при T, K: I - 1.6, 2 - 4.2. Штриховыми линиями приведены результаты расчета ρ_{zz}/ρ_{xx} по формуле (9) с использованием эмпирических зависимостей p(H).

 $(\rho_{zz} > \rho_{xx})$ экспериментально наблюдалось в узкощелевых компенсированных образцах HgMnTe в области прыжковой проводимости [4,7,18]. Авторы работы [19] также связывают наблюдаемое в сильных магнитных полях 100 < H < 400 кЭ в образцах HgMnTeSe гигантское отрицательное магнитосопротивление с ростом проводимости по примесным состояниям из-за увеличения перекрытия волновых функций акцепторов в магнитном поле.

Мы полагаем, что в исследованных нами образцах проводимость осуществляется зонными носителями. Действительно, подвижности дырок при (1.4–1.7) К сравнительно велики и по порядку величины согласуются с оценками по формуле Брукса–Херринга. В исследованных кристаллах $100 \leq |\varepsilon_g| \leq 200$ мэВ оценки массы легкой дырки дают $0.01m_0 \leq m_l \leq 0.02m_0$. Согласно (6), анизотропия массы валентной зоны $\varepsilon_{-3/2}(\mathbf{k})$ составляет $3m_h/4m_l = (15-30)$ для $m_h = 0.4m_0$.

В случае проводимости по валентной зоне бесщелевого или узкощелевого полумагнитного полупроводника квантовый предел достигается в поле $H = H_q$, когда выше уровня Ферми остается один уровень Ландау b_{-1} , т. е. $\varepsilon_F < \Delta \varepsilon$. При $\Delta \varepsilon \approx B$ и $B > \hbar \omega_h$ квантовый предел может быть достигнут при условии

$$\varepsilon_F(H) > \hbar \omega_h.$$
 (8)

Мы полагаем, что именно это необычное соотношение между кинетической и циклотронной энергиями дырок в квантовом пределе обусловливает наблюдаемую нами аномальную анизотропию магнитосопротивления [6]. Действительно, как показано в [12], для вырожденного электронного газа в квантовом пределе при рассеянии на точечных дефектах справедливо выражение

$$\frac{\rho_{zz}}{\rho_{xx}} = 4 \frac{\varepsilon_F(H)}{\hbar \omega_c},\tag{9}$$

где $\omega_c = eH/mc$ — циклотронная частота,

$$\varepsilon_F(H) = 2\pi^4 \hbar^2 \lambda^4 p^2 / m \tag{10}$$

и $\lambda = (c\hbar/eH)^{1/2}$ — магнитная длина. Подчеркнем, что, согласно [12], как в циклотронную частоту, так и в выражение (10) для $\varepsilon_F(H)$ входит эффективная масса *m*, соответствующая движению носителей в *z*-направлении, т.е. в нашем случае $m \equiv m_h$ (см. (7)). В результате соотношение (9) с учетом (8) обеспечивает выполнение неравенства $\rho_{zz} > \rho_{xx}$. Усиление эффекта по мере возрастания *x*, *H* и понижении *T* естественным образом объясняется ростом намагниченности $\langle S_z \rangle$ подсистемы ионов Mn⁺⁺ и, как следствие, увеличением обменной добавки *B* к энергии дырок.

Используя выражение (10) для $\varepsilon_F(H)$ в квантовом пределе, из (9) получим

$$\rho_{zz}/\rho_{xx} = 8\pi^4 \lambda^6 p^2 \sim p^2/H^3.$$
(11)

Наблюдаемое поведение ρ_{zz}/ρ_{xx} в зависимости от H находится в качественном соответствии с выражением (11). В частности, из рис. 7, b и c видно, что отношение ρ_{zz}/ρ_{xx} увеличивается в области быстрого роста концентрации дырок, а в области слабого изменения p(H) при H > (30-40) кЭ значение ρ_{zz}/ρ_{xx} насыщается или даже убывает. Важно также, что рассчитанные в рамках простейших представлений (11) значения ρ_{zz}/ρ_{xx} близки к наблюдаемым экспериментально.

4. Заключение

В бесщелевых узкощелевых И полупроводниках $Hg_{1-x}Mn_{x}Te_{1-y}Se_{y}$ с x 0.03 - 0.11 $(-150 < \varepsilon_g < 190)$ мэВ и концентрацией акцепторов $5.4 \cdot 10^{16}$ $\stackrel{\circ}{\leqslant}$ N_A $\stackrel{\circ}{\leqslant}$ $4.3 \cdot 10^{18} \, {
m cm^{-3}}$ подробно изучены обусловленные влиянием эффекты, обменного *p*-*d*-взаимодействия и характерные для полумагнитных полупроводников *р*-типа: эффект вскипания дырок в магнитном поле И аномальная анизотропия магнитосопротивления. Мы полагаем, что рост концентрации дырок с ростом Н в исследованных образцах есть следствие существования при H = 0магнитного состояний связанного полярона И постепенной делокализации носителей при разрушении этих состояний магнитным полем. С другой стороны, необычное соотношение продольного и поперечного магнитосопротивлений ρ_{zz} > ρ_{xx} по существу есть следствие анизотропного (по отношению к направлению магнитного поля) вида изоэнергетических поверхностей высшей валентной зоны $\varepsilon_{-3/2}(\mathbf{k})$, отщепленной обменным p-d-взаимодействием от зоны Γ_8 с учетом квантования Ландау в полупроводниках с малыми $|\varepsilon_g|$. При этом существенный отрыв верхнего уровня Ландау b_{-1} от остальных уровней валентной зоны обусловлен как малостью поперечной эффективной массы зоны $\varepsilon_{-3/2}(\mathbf{k})$, так и большим значением обменной добавки *B* к энергии зоны Г₈.

Необходимо отметить, что в рамках модели связанного магнитного полярона рост концентрации дырок в магнитном поле происходит именно благодаря отщеплению (и движению вверх по энергии) зоны b_{-1} . С другой стороны, аномальное соотношение продольного и поперечного магнитосопротивлений наблюдается лишь в квантовом пределе, т.е. в условиях, когда проводимость осуществляется носителями зоны b_{-1} . Таким образом, наблюдаемые эффекты вскипания дырок и аномальной анизотропии магнитосопротивления тесно взаимосвязаны и обусловлены общей причиной, а именно — своеобразием вида спектра уровней Ландау в исследованных полумагнитных полупроводниках.

Список литературы

- К.Р. Крылов, Н.К. Леринман, А.И. Пономарев, Л.Д. Сабирзянова, Н.Г. Шелушинина, Н.П. Гавалешко, П.Д. Марьянчук. ФТП, 28, 1382 (1994).
- [2] I.M. Tsidilkovski, G.I. Harus, N.G. Shelushinina. Adv. Phys., 34, 43 (1985).
- [3] А.И. Елизаров, В.И. Иванов-Омский, А.А. Корнияш, В.И. Петриков. ФТП, 18, 201 (1984).
- [4] J.K. Furdyna. J. Vac. Sci. Techn., 27, 220 (1982).
- [5] А.В. Германенко, Л.П. Зверев, В.В. Кружаев, Г.М. Миньков, О.Э. Рут. ФТТ, 27, 1857 (1995).
- [6] Н.Г. Глузман, А.Б. Давыдов, К.Р. Крылов, Н.К. Леринман, Б.Б. Поникаров, А.И. Пономарев, Л.Д. Сабирзянова, И.М. Цидильковский, Н.Г. Шелушинина, И.Н. Горбатюк, И.М. Раренко. ФТП, 20, 1970 (1986).

- [7] J. Mycielski. Proc. Int. Conf. High Magnetic Fields Semicond. Phys. (Grenoble, 1982) p. 431.
- [8] T. Dietl, J. Spalek. Phys. Rev. B, 28, 1548 (1983).
- [9] J. Mycielski. In: Diluted Magnetic Semiconductors, ed. by J.K. Furdyna and J. Kossut (Academic Press, 1988). [Пер.: Полумагнитные полупроводники (М. Мир, 1992)].
- [10] W. Dobrowolski, M. von Ortenberg, A.M. Sandauer, R.R. Galazka, A. Mycielski, R. Pauthenet. Proc. 4th Int. Conf. Phys. Narrow Gap Semicond. (Linz, 1981) p. 302.
- [11] А.В. Германенко, В.В. Кружаев, Г.М. Миньков, О.Э. Рут. ФТП, **22**, 992 (1988).
- [12] E. Adams, T. Holstein. J. Phys. Chem. Sol., 10, 254 (1959).
- [13] J.A. Gaj, J. Ginter, R.R. Galazka. Phys. St. Sol. (b), 89, 655 (1978).
- [14] G. Bastard, C. Rigaux, Y. Guldner, J. Mycielski, A. Mycielski. J. de Phys., 39, 87 (1978).
- [15] C.R. Pidgeon, R.N. Brown. Phys. Rev., 146, 575 (1966).
- [16] M. Dobrowolska, W. Dobrowolski, R.R. Galazka, J. Kossut. Sol. St. Commun., 30, 25 (1979).
- [17] Л.П. Зверев, В.В. Кружаев, Г.М. Миньков, О.Э. Рут, Н.П. Гавалешко, В.М. Фрасуняк. ФТТ, 26, 2943 (1984).
- [18] J.R. Anderson, W.B. Johnson, D.R. Stone. J. Vac. Sci. Techn., A1, 1761 (1983).
- [19] В.А. Кульбачинский, П.Д. Марьянчук, И.А. Чурилов. ФТП, 29, 2007 (1995).

Редактор Т.А. Полянская

The boil-off effect and magnetoresistance peculiarities in semimagnetic semiconductor p-Hg_{1-x}Mn_xTe_{1-y}Se_y

N.K. Lerinman, P.D. Marjanchuk*, A.L. Ponomarev, L.D. Sabirzyanova, N.G. Shelushinina

Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia *Chernovitskii State University, Chernovtsi, Ukraine

Abstract The galvanomagnetic effects in zero- and narrowgap semimagnetic semiconductors $Hg_{1-x}Mn_xTe_{1-y}Se_y$ with $x = 0.03 \div 0.11, y = 0.01 \div 0.10, -150 < \varepsilon_g < 190 \text{ meV}$ and acceptor concentrations 5.4 $\cdot 10^{16} < N_A < 4.3 \cdot 10^{18} \text{ cm}^{-3}$ were investigated. In the magnetic fields $H = (5 \div 50)$ kOe and $T = (1.3 \div 4.2)$ K an essential (up to 500 times) increase in the hole concentration p = 1/eR was observed. This increase is accompanied by a fall both of longitudinal ρ_{zz} and transverse ρ_{xx} magnetotesistance. We suppose that a "boil-off" (opposite to freeze-out) of holes is the consequence of the existence of bound magnetic polaron states at H = 0 and of the carrier delocalization due to the gradual destruction of those states in external magnetic field. The anomalous relation of longitudinal and transverse magnetoresistances ($\rho_{zz} > \rho_{xx}$) observed in investigated samples at helium tempetature for H > 10 kOe is explained by peculiarities of the valence band energy spectrum of semimagnetic semiconductor in quantizing magnetic fields.

Fax: 445–244

E-mail: semicond@ifm.e-burg.su(Lerinman)