Сравнение подвижности равновесных и неравновесных носителей заряда в пленках поликристаллического синтетического алмаза и аморфного алмазоподобного углерода

© Ю.В. Плесков, А.Р. Тамеев, В.П. Варнин*, И.Г. Теремецкая*, А.М. Баранов**

Институт электрохимии им. А.Н.Фрумкина Российской академии наук,

117071 Москва, Россия

* Институт физической химии Российской академии наук,

117915 Москва, Россия

** Научно-исследовательский институт вакуумной техники им. С.А.Векшинского,

113105 Москва, Россия

(Получена 12 мая 1996 г. Принята к печати 1 апреля 1997 г.)

По времени пролета инжектированных носителей заряда сквозь пленки поликристаллического алмаза или алмазоподобного углерода определена подвижность неравновесных носителей порядка 10^{-3} и $3 \cdot 10^{-8}$ см²/В·с соответственно. В поликристаллическом алмазе неравновесная подвижность дырок на 3 порядка величины ниже равновесной подвижности ($0.1 \div 1$ см²/В·с), найденной из электропроводности пленок на постоянном токе, что можно объяснить влиянием на перенос неравновесных носителей процессов захвата их ловушками.

Синтетический полупроводниковый алмаз — перспективный материал для электроники, оптики и ряда других областей [1]; в последние годы он активно исследуется также в качестве возможного материала для неразрушающихся электродов в электрохимии [2]. В настоящей работе мы использовали сочетание электрических (кинетика переходного тока при инжекции неравновесных носителей тока в пленку) и электрохимических (спектроскопия импеданса контакта алмазная пленка– электролит [3]) измерений для определения подвижности дырок в алмазе, знание которой может быть полезно при описании процессов переноса в объеме алмаза и на межфазных границах. Мы сопоставили значения подвижности дырок в алмазе, измеренные в равновесных и неравновесных условиях.

Методика эксперимента

Образцы. Поликристаллические алмазные пленки мы выращивали на вольфрамовой подложке методом химического газофазного осаждения из смеси метана с водородом, активированной с помощью раскаленной нити, как описано в работе [4]. Для измерений проводимости пленок методом спектроскопии импеданса электрохимического контакта мы использовали достаточно хорошо проводящие пленки, легированные В [4], с удельным сопротивлением порядка 10^4 Ом · см и концентрацией основных носителей 10^{17} – $3 \cdot 10^{18}$ см⁻³; измерения кинетики переходного тока проводились на диэлектрических (нелегированных) образцах с удельным сопротивлением $10^9 \div 10^{10}$ Ом · см. Все пленки относительно мелкокристаллические: средний размер видимых кристаллитов на поверхности пленки до 1 мкм.

Алмазоподобные пленки *a*-C: Н на молибденовой подложке были получены из газовой фазы циклогексана в плазме, возбуждаемой высокочастотным разрядом (13.56 МГц) [5]. Перед нанесением пленки поверхность подложки была предварительно обработана в плазме CF₄. Нанесение пленок происходило при комнатной температуре. Толщина пленок около100 нм.

Измерение подвижности. Перенос неравновесных носителей заряда в пленках алмаза был исследован время-пролетным методом [6]. Регистрировалась кинетика переходного тока, обусловленного униполярным дрейфом под действием приложенного постоянного электрического поля инжектированных в образец неравновесных носителей заряда в сэндвич-структуре металл– образец-металл. В нашем случае одним из металлических электродов служила подложка из W или подложка из Мо, другим — испаренный на поверхность исследуемой пленки слой Au. В исследуемую пленку алмаза инжектировался пакет носителей заряда в виде тонкого слоя с шириной много меньше толщины образца.

Избыточные носители заряда генерировались световым импульсом. Поскольку квантовый выход фотогенерации носителей заряда в собственно алмазной и алмазоподобной пленке на длине волны применявшегося лазера оказался недостаточно высоким (в алмазе порядка 10⁻⁴ [7]), в сэндвич-структуру был добавлен слой Se (между поверхностью пленки и золотым электродом), в котором и происходили фотогенерация и разделение носителей заряда и из которого носители инжектировались в исследуемую пленку. Толщина слоя селена (0.2÷0.5 мкм) была много меньше толщины алмазной пленки, но сравнима с толщиной пленки а-С:Н. Поэтому в 1-м случае падением напряжения в слое Se мы пренебрегали, а во 2-м случае при определении напряженности поля в пленке a-C:H, необходимой для вычисления подвижности, вносили приближенно поправку на фактическое распределение электрического поля в сэндвич-структуре.

Источником световых импульсов служил азотный лазер ИЛГИ-503 (*t*_{imp} = 10 нс на полувысоте импульса,

№ образца	<i>d</i> , мкм	<i>F</i> , В/см	t_T , MC	Неравновесная подвижность μ , см ² /В \cdot с	$\sigma, \ \mathrm{Om^{-1}cm^{-1}}$	N_A , cm ⁻³	Равновесная подвижность μ , см ² /В · с
Полиалмаз							
475	26	$1.4 \cdot 10^4$	0.3	$6.2 \cdot 10^{-4}$	$7\cdot 10^{-10}$	-	-
500	0	$1.9 \cdot 10^{-4}$	0.16	$8.4 \cdot 10^{-4}$	$2 10^{-10}$		
508	8	$0.75 \cdot 10^{-1}$	0.055	1.9 · 10	$3 \cdot 10^{-10}$	-	-
354	10	$0.09 \cdot 10^{4}$	1.1	10 ⁻³	-	-	-
306	10	-	_	-	$0.9\cdot 10^{-4}$	$5 \cdot 10^{17}$	1
559	6	-	_	-	$0.5\cdot 10^{-4}$	$3 \cdot 10^{18}$	0.1
419	2.5	-	-	-	$0.6\cdot 10^{-4}$	$(0.6 \cdot 10^{17})$	(6)
420	2.3	—	-	-	$1.2\cdot 10^{-4}$	(10^{17})	(7)
<i>a</i> -C : H							
228	0.1	9	4	$3 \cdot 10^{-8}$	-	-	-

Значения подвижности дырок и величины, использованные при вычислениях

Примечание. В скобках указаны менее достоверные значения.

длина волны света — 337 нм). Кинетика переходного тока регистрировалась с помощью запоминающего осциллографа С9-8 с предусилителем (дифференциальный усилитель Я-40-1102), соединенного с компьютером для накопления и обработки данных. Постоянная времени измерительной цепи $R_m C_m$ была меньше, чем время пролета носителей t_T . Для одновременного запуска лазерного импульса и осциллографа служил генератор электрических импульсов Г5-54. Все измерения выполнены при комнатной температуре.

Полученные результаты и их обсуждение

Кинетические кривые переходных токов при инжекции электронов в пленку алмаза (типичная кривая показана на рисунке) имеют после начального спада, соответствующего разряду $R_m C_m$ -цепи (участок A), характерное плато (участок B), за которым следует относительно быстрый спад тока (участок C). Момент времени начала этого спада t_T (он показан на рисунке стрелкой) соответствует приходу переднего фронта пакета носителей заряда к противоположному электроду через исследуемую алмазную пленку толщиной d.

Дрейфовую подвижность носителей заряда μ мы рассчитывали по формуле $\mu = d/Ft_T$, где F = U/d напряженность электрического поля, U — приложенное напряжение. Определенные таким образом значения подвижности приведены в таблице вместе с величинами "равновесной" подвижности, рассчитаной из удельной проводимости σ легированных В пленок по формуле $\mu = \sigma/pe$. Здесь

$$p = \left[(N_A N_v)^{1/2} / \sqrt{2} \right] \exp(-E_A / 2kT)$$

— концентрация основных носителей (дырок в легированном В алмазе, который является полупроводником р-типа), N_A — концентрация акцепторов (точнее, концентрация нескомпенсированных акцепторов $N_A - N_D$), $N_{\nu} \cong 2 \cdot 10^{19} \text{ см}^{-3}$ — плотность состояний в валентной зоне, $E_A = 0.37 \text{ эB}$ — энергия ионизации акцептора В. Значения σ и N_A , приведенные в таблице, взяты из работ [2,3]. В этих работах электрическое сопротивление пленок мы определяли, экстраполируя действительную составляющую импеданса электродов, представленного в комплексной плоскости, на бесконечную частоту, а концентрацию нескомпенсированных акцепторов — по наклону графиков Мотта-Шоттки, снятых на контакте алмаз-(раствор электролита).

При инжекции в алмазную пленку дырок форма кривой переходного тока, время пролета и вычисленная подвижность близки к рассмотренному выше случаю инжекции электронов. Зависимость неравновесной подвижности от электрического поля, если и существует реально, то она весьма слабая (в исследуемом нами интервале значений напряженности — $10^3 \div 10^4$ B/см). Природа этой зависимости нами не исследовалась.

Кривая спада тока в пленке *a*-C:H после инжекции дырок качественно напоминает кривую, приведенную на рисунке. Однако значения неравновесной подвижности носителей тока в *a*-C:H на 4÷5 порядков величины ниже, чем в полилкристаллическом алмазе, как для дырок (см. таблицу), так и для электронов, что значительно ниже, чем получено в работе [8] для пленок, выращенных в плазме CH₄ + Ar. Как и в случае поликристаллического алмаза, в *a*-C:H подвижность электронов и дырок приблизительно одинаковы.

Благодаря фактически униполярному характеру наведенной проводимости в алмазе при данной постановке эксперимента инжектированные носители заряда не испытывают рекомбинации (хотя время жизни электроннодырочных пар в алмазе весьма мало), так как в образце практически нет носителей другого знака. Но неравновесные носители могут захватываться ловушками. Если

Кривая переходного тока при инжекции дырок в поликристаллическом алмазе. Образец 475 (см. таблицу). Электрическое поле $F = 1.9 \cdot 10^4 \,\mathrm{B/cm}$. Время пролета t_T показано стрелкой.

время освобождения из ловушек намного больше времени пролета основной массы инжектированных носителей t_T , то величина наблюдаемого сигнала тока уменьшается, но на измеряемой величине подвижности захват не должен сказываться. Незначительный остаточный ток на конечном, пологом участке кривой D (см. рисунок) обусловлен, вероятно, подходом к электроду–коллектору носителей, захваченных ловушками в объеме пленки, а затем освободившихся из них. Если же за время пролета носители заряда успевают захватываться ловушками и освобождаться из них, то это должно приводить к замедлению пролета пакета, т. е. к уменьшению эффективной подвижности.

Измеренные нами в поликристаллических алмазных пленках значения подвижностей (как равновесной, так и неравновесной) на несколько порядков величины ниже дрейфовой подвижности электронов и дырок в монокристаллах алмаза (соответственно 2500 и $2100 \text{ см}^2/\text{B} \cdot \text{см}$ [9]). Это и не удивительно, если принять во внимание затруднения, создаваемые переносу свободных носителей межкристаллитными границами, а также другими дефектами кристаллической структуры поликристаллического алмаза. Подтверждением этому может служить измеренная нами очень низкая подвижность носителей заряда в *a*-C:H, который может приближенно служить моделью материала межкристаллитных границ в поликристаллическом алмазе.

Из сопоставления данных таблицы можно сделать вывод о том, что равновесная подвижность дырок в исследованных нами алмазных пленках на 3 порядка величины выше, чем неравновесная. Это различие можно объяснить тем, что равновесные дырки (в легированных В пленках) и неравновесные дырки и электроны, инжектированные в нелегированные ("диэлектрические") алмазные пленки, переносятся по двум различным механизмам.

К переносу носителей в относительно неупорядоченной среде, каковой является пленка поликристаллического алмаза, можно применить модель перескоков (прыжков) по центрам. При измерениях подвижности в неравновесных условиях, т.е. в диэлектрических образцах, инжектированные в образец носители попадают в расположенные глубже центры захвата (ловушки), которые до этого были не заполнены. Переходные токи определяются носителями заряда, испытавшими захват в ловушки и освободившимися из них. Вероятно, описанный выше механизм является преобладающим для неравновесных дырок и электронов в нелегированных алмазных пленках, и ему отвечают сравнительно низкие значения подвижности. При измерении же в "равновесном" режиме — на легированных образцах — ловушки заполнены, и проводимость пленки определяется свободными носителями заряда. Этот 2-й, параллельный, механизм проводимости, связанный с движением свободных дырок в зоне проводимости, становится заметным лишь при достаточно высокой равновесной концентрации дырок, которая обеспечивается введением в алмаз легирующей примеси В. При этом механизме проводимости подвижность выше.

Приносим глубокую благодарность В.И. Полякову и А.В. Ванникову за обсуждение полученных результатов.

Настоящее исследование в части, относящейся к поликристаллическому алмазу, выполнено при финансовой поддержке Российкого фонда фундаментальных исследований (проект № 96-03-34133а).

Список литературы

- [1] *Properties of Natural and Synthetic Diamond*, Ed. by J. Field, (London–N.Y., Academic Press, 1992).
- [2] А.Д. Модестов, Ю.В. Плесков, В.П. Варнин, И.Г. Теремецкая. Электрохимия, **33**, № 1 (1997).
- [3] Yu.V. Pleskov, V.Ya. Mishuk, M.A. Abaturov, V.V. Elkin, M.D. Krotova, V.P. Varnin, I.G. Teremetskaya. J. Electroanal. Chem., 396, 227 (1995).
- [4] А.Я. Сахарова, Ю.В. Плесков, Ф. Ди Кварто, С. Пьяцца, К. Сунсери, И.Г. Теремецкая, В.П. Варнин. Электрохимия, **31**, 188 (1995).
- [5] V.V. Sleptsov, A.A. Kuzin, G.F. Ivanovsky, V.M. Elinsov, S.S. Gerasimovich, A.M. Baranov, P.E. Kondrashov. J. Non-Cryst. Sol., 136, 53 (1991).
- [6] А.В. Ванников, В.К. Матвеев, В.П. Сичкарь, А.П. Тютнев. Радиационные эффекты в полимерах. Электрические свойства (М., Наука, 1982) гл. 1.
- [7] Ю.В. Плесков, А.Я. Сахарова, А.В. Чуриков, В.П. Варнин, И.Г. Теремецкая. Электрохимия, 32, № 10 (1996).
- [8] О.И. Коньков, И.Н. Трапезникова, Е.И. Теруков. ФТП, 47, 1406 (1994).
- [9] В.С. Вавилов, А.А. Гиппиус, Е.А. Конорова. Электронные и оптические процессы в алмазе (М., Наука, 1985).

Редактор Т.А. Полянская

Comparison of the equilibrium and nonequilibrium charge carrier mobility in polycrystalline synthetic diamond and amorphous diamondlike carbon films

Yu.V. Pleskov, A.R. Tameev, V.P. Varnin*, I.G. Teremetskaya*, A.M. Baranov**

A.N. Frumkin Institute of Electrochemistry, Russian Academy of Sciences, 117071 Moscow, Russian * Institute of Physical Chemistry, Russian Academy of Sciences, 117915 Moscow, Russia ** S.A. Vekshinsky Research Institute of Vacuum Techniques, 113105 Moscow, Russia

Abstract Mobility of nonequilibrium charge carriers in polycrystalline diamond and *a*-C:H films was determined, by measurements of the injected carriers transit time across the film, as 10^{-3} and $3 \cdot 10^{-8}$ cm²/V·s respectively. In polycrystalline diamond films the nonequilibrium hole mobility is three orders of magnitude lower that the equilibrium mobility $(0.1-1 \text{ cm}^2/\text{V} \cdot \text{s})$ determined from the films' dc-conductivity. This can be explained by the effects of trapping of the nonequilibrium charge carriers on their transport in polycrystalline diamond.

Fax: (095)9520846 (Pleskov) E-mail: chrush@elchem.rc.ac.ru (Pleskov)