Фазовые переходы в оксифториде $(NH_4)_2WO_2F_4$

© С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ*

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия * Институт химии Дальневосточного отделения Российской академии наук, 690022 Владивосток, Россия

E-mail: msv@iph.krasn.ru

(Поступила в Редакцию 3 февраля 2005 г. В окончательной редакции 18 апреля 2005 г.)

Выращены монокристаллы $(NH_4)_2WO_2F_4$, проведены поляризационно-оптические и ДСМ-исследования, измерено двупреломление в интервале температур 90–350 К. Обнаружен структурный фазовый переход первого рода при $T_{01\uparrow} = 202$ К с температурным гистерезисом $\Delta T_{01} \approx 6-12$ К. Переход сопровождается двойникованием и изменением симметрии $Cmcm \leftrightarrow \overline{1}$. Найдена слабая дополнительная аномалия ДСМ-сигнала при $T_{02} \approx 170$ К. Суммарный тепловой эффект обеих аномалий составляет $\sum \Delta H_i = 3200 \pm 400$ J/mol, $\sum \Delta S_i = 16.5 \pm 2.0$ J/mol·K. Фазовый переход при T_{01} относится к превращениям типа порядок–беспорядок.

Работа выполнена при финансовой поддержке Фонда содействия отечественной науке, Российского фонда фундаментальных исследований (грант № 03-02-16079), гранта Президента РФ по поддержке научных школ (грант НШ 939.2003.2), Красноярского краевого фонда науки (грант 14G110).

PACS: 64.70.Kb, 65.40.Ba, 78.20.Fm

Оксифторидные соединения с общей формулой $A_2MO_2F_4$ (A = Na, Rb, Cs или молекулярный катион, M = W, Mo) активно исследуются различными физическими методами на протяжении ряда лет [1–7]. Интерес к этим кристаллам объясняется возможностью получить новые функциональные материалы с ацентричной симметрией и широким диапазоном прозрачности, так как структура этих веществ состоит из катионов A и изолированных полярных октаэдрических групп $MO_2F_4^{2-}$. Однако большинство этих соединений кристаллизуется в центросимметричных пространственных группах вследствие ориентационного разупорядочения структурных элементов. Для достижения желаемого результата необходимо понять природу ориентационного беспорядка оксифторидных анионов.

В зависимости от размера и формы катионов А в указанном семействе образуются структуры как различной симметрии, так и с разной степенью упорядочения ионных групп $MO_2F_4^{2-}$. Полярную симметрию вещества удалось реализовать в кристаллах с двумя различными многоатомными органическими катионами [5–7]. Структура $Cs_2WO_2F_4$ ($P\bar{3}m1$) характеризуется полным фторкислородным разупорядочением [3], $Rb_2MoO_2F_4$ (*Стет*) — частичным упорядочением [1], а в Na₂WO₂F₄ (*Pbcn*) [2] атомы лигандов полностью упорядочены. Вопросы о температурной области устойчивости реализующихся фаз, а тем более об изменении степени упорядочения лигандов в результате фазовых переходов ($\Phi\Pi$) в соединениях $A_2Mo_2F_4$ до сих пор не обсуждались, и сведений о структурных изменениях в них, насколько нам известно, в литературе нет.

Согласно [8], кристалл $(NH_4)_2WO_2F_4$ при комнатной температуре частично упорядочен, имеет симметрию *Стест* (*Z* = 4), а параметры его элементарной ячейки составляют *a* = 5.9510 Å, *b* = 14.441 Å, *c* = 7.1571 Å. В настоящей работе выполнены поляризационно-оптические исследования, измерения теплоемкости и двупреломления кристалла $(NH_4)_2WO_2F_4$ в широком интервале температур с целью поиска и первичного исследования $\Phi\Pi$ в нем.

Исследования теплоемкости были проведены на дифференциальном сканирующем микрокалориметре ДСМ-2М в интервале температур 120-370 К. Измерения осуществлялись в режимах нагрева и охлаждения со скоростью сканирования 8 К/min. Для повышения достоверности результатов эксперименты выполнялись на серии образцов, полученных в различных кристаллизациях. Массы образцов варьировались в пределах 0.15-0.20 g. Двупреломление исследовалось на пластинах срезов (001), (010) и (100) методами компенсатора Берека с точностью ≈ 10⁻⁵ и компенсатора Сенармона с чувствительностью не ниже $\cong 10^{-7}$ на длине волны 6328 А. Первый метод использовался для определения абсолютного значения измеряемой величины, второй позволял исследовать ее температурную зависимость. Поляризационно-оптические наблюдения проводились с помощью поляризационного микроскопа Axiolab. Все опыты выполнялись в интервале температур от 90 до 350 К.

1. Результаты эксперимента

Бесцветные прозрачные монокристаллы $(NH_4)_2WO_2F_4$ объемом до 0.5 cm³ были выращены путем медленного испарения насыщенного фторидного водного раствора соли, полученной в результате взаимодействия паравольфрамата аммония с концентрированной HF (40 wt.%), или фторированием CaWO₄ с использованием NH₄HF₂ при 473 K и последующим выщелачиванием спека водой. На

Рис. 1. Габитус кристаллов $(NH_4)_2WO_2F_4$.

первый взгляд форма выросших кристаллов различна: шестигранные пластинки или удлиненные прямоугольники. Однако при внимательном изучении определен габитус кристалла (рис. 1): это шестигранные призмы с углами между гранями 136 и 112° (в соответствии с соотношениаем *a/b* параметров элементарной ячейки).

Исследования в поляризованном свете показали, что при комнатной температуре в пластинах прямых кристаллографических срезов $(NH_4)_2WO_2F_4$ наблюдается ровное и прямое погасание, характерное для ромбической симметрии. Форма оптической индикатрисы соответствует оптически отрицательному кристаллу. Выше комнатной температуры в срезе (001) виден выход острой биссектрисы с плоскостью оптических осей (010) и следующим соотношением показателей преломления: $n_c = n_p, n_a = n_g, n_b = n_m$. Ниже комнатной температуры плоскость оптических осей изменяет ориентацию на (100): $n_c = n_p, n_a = n_m, n_b = n_g$.

Температурные зависимости ДСМ-сигнала, полученные в результате термоциклирования, представлены на рис. 2. В режиме нагрева наблюдается аномальное поведение сигнала (острый пик с максимумом при $T_{01} = 202 \pm 1$ K), свидетельствующее о наличии ФП в (NH₄)₂WO₂F₄ при этой температуре. В процессе охлаждения обнаружен гистерезис температуры перехода $\delta T_{01} = 9 \pm 1$ K. Кроме этого пика на кривой ДСМ-сигнала, записанной в режиме нагрева, в области температуры $T_{02} = 170$ K наблюдается еще одна слабо выраженная аномалия. Наличие обеих аномалий подтверждено многократными повторными исследования, выполненными на шести разных образцах.

Результаты исследования температурных зависимостей двупреломления Δn_a , Δn_b и Δn_c кристалла $(\mathrm{NH}_4)_2\mathrm{WO}_2\mathrm{F}_4$ представлены на рис. 3. При комнатной температуре величины двупреломления в направлениях [100] (Δn_a) и [010] (Δn_b) приблизительно одинаковы (≈ 0.02), а вдоль [001] значение Δn_c близко к нулю. На длине волны $\lambda = 6328$ Å точка оптической изотропии в срезе (001) наблюдается при T = 284 К. Дальнейшее нагревание или охлаждение приводит к смене знака двупреломления. Зависимость двупреломления от температуры в процессе охлаждения в области 350-260 К имеет линейный характер, а ниже наблюдается отклонение от линейности по срезам (100) и (001). На рис. 3 штриховыми линиями показана экстраполированная линейная зависимость температурного хода двупреломления. Видно, что в исследованном кристалле в широком интервале температур выше ФП наблюдаются сильные предпереходные явления, растянутые на ≈ 70 К. Ниже ~ 200 К наблюдается ФП, сопровождающийся скачком двупреломления и температурным гистерезисом, величина которого различна в разных экспериментах (рис. 3). Температура ФП в процессе охлаждения не постоянна и может изменяться в интервале значений $T_{011} = 190-196$ К для разных образцов. Фазовый пере-

Рис. 2. Температурная зависимость ДСМ-сигнала в режимах нагрева (1) и охлаждения (2). Штриховая линия — результат аппроксимации полиномом регулярного вклада в сигнал за пределами аномальной области.

Рис. 3. Температурная зависимость двупреломления $(NH_4)_2WO_2F_4$. $I - \Delta n_a$, $2 - \Delta n_b$, $3 - \Delta n_c$.

Рис. 4. Погасание кристаллических пластин $(NH_4)_2WO_2F_4$ в поляризованном свете. *a*, *b* — толстые образцы среза (100) в положении погасания выше и ниже фазового перехода соответственно; *c* — тонкий образец среза (100) при *T* = 150 K; *d* — хорошее погасание тонких срезов (010) и (001) при 150 K; *e*, *f* — визуализация двойниковой структуры при повороте на небольшой угол $\pm \varphi \approx 1-2^{\circ}$ от положения погасания на тонких срезах (010) (*e*) и (001) (*f*).

ход при нагревании всегда происходит при одной температуре $T_{01\uparrow} = 202$ К, поэтому температурный гистерезис в разных экспериментах имеет различную величину $\delta T_{01} \approx 6-12$ К. Переход сопровоождается растрескиванием образцов. В области $T_2 \approx 170$ К виден небольшой перегиб на зависимости $\Delta n_c(T)$, эта же температура стала нижним пределом в измерениях $\Delta n_a(T)$ из-за сильного рассеяния света.

При наблюдении в поляризованном свете для кристаллических образцов толщиной ~ $1-2 \,\mathrm{mm}$ обнаружено, что во всем исследованном интервале температур погасание пластин срезов (010) и (001) остается ровным, двойников нет. В срезе (100) погасание также хорошее (рис. 4, *a*), однако ниже $T \approx 200 \,\mathrm{K}$ его четкость постепенно ухудшается, появляются зернистые неоднородности. При дальнейшем охлаждении контрастность картины увеличивается, пятна приобретают окраску, но никакой систематической структуры не видно (рис. 4, *b*). В процессе нагревания описанная картина повторяется с некоторым температурным гистерезисом.

На тонких (~ 100 μ m) пластинах ниже T_{01} наблюдается несколько иная картина. В срезе (100) при сильных увеличениях удалось зафиксировать мелкую иглоподобную систематическую структуру (рис. 4, *c*) с компонентами, положение погасания которых различается на сравнительно большой угол $2\varphi \approx 10-14^\circ$. В тех срезах, где на толстых образцах наблюдалось четкое погасание, на тонких погасание остается также хорошим (рис. 4, *d*). Однако при небольшом отклонении от положения погасания проявляется очень слабая "мерцающая" двойниковая структура с малыми углами разориентации оптических индикатрис $2\varphi \approx 2-3^\circ$. В срезе (010) (рис. 4, *e*) эта структура представляет собой чередующиеся светлые и темные пятна, в срезе (001) — клинообразные полосы (рис. 4, *f*).

Никаких изменений в погасаниях пластин различных срезов в области $T_2 \approx 170 \,\mathrm{K}$ не обнаружено. При при-

ложении сжимающего напряжения X_4 не обнаружено заметного влияния на описанную выше картину. Не найдено и генерации второй оптической гармоники в указанном выше температурном интервале.

2. Обсуждение результатов

Исследования, проведенные нами, указывают на наличие $\Phi\Pi$ в кристалле (NH₄)₂WO₂F₄ при $T_{01\uparrow} = 202$ K. ФП сопровождается тепловой аномалией, скачком двупреломления и температурным гистерезисом, характерным для переходов первого рода. Согласно наблюдениям в поляризованном свете, симметрия высокотемпературной фазы ромбическая. Визуализация мелкой двойниковой структуры при T < T₀₁ по всем трем ортогональным направлениям и разориентация оптических индикатрис в соседних двойниках указывает на то, что в результате перехода происходит потеря всех плоскостей симметрии и осей второго порядка, существовавших в кристалле при комнатной температуре. Отсутствие второй оптической гармоники при низких температурах позволяет сделать предположение о наличии центра симметрии, а также о том, что при $T_{01}\approx 202\,{\rm K}$ происходит ФП первого рода с изменением симметрии $Cmcm \leftrightarrow \overline{1}$. Наблюдаемые ниже перехода оптические неоднородности на сравнительно "толстых" образцах являются результатом суммарного оптического эффекта на мелкой двойниковой структуре.

Попытки зафиксировать структурные изменения при температуре ниже T_{01} с помощью рентгеновского порошкового дифрактометра оказались безуспешными: заметных различий в дифрактограммах высоко- и низкотемпературной фаз, полученных соответственно при 290 и 120 К, не обнаружено. Таким образом, можно предположить, что, несмотря на ярко выраженный ФП первого рода при T_{01} , значительные изменения двупреломления и симметрии, искажения ромбической элементарной ячейки кристалла $(NH_4)_2WO_2F_4$ в результате ФП невелики.

Оптические исследования не позволили найти какихлибо доказательств изменения симметрии при $T = T_2$. Однако комплекс проведенных исследований позволяет сделать предположение, что исследуемый оксифторид испытывает последовательность из двух фазовых превращений при T_{01} и T_{02} .

Для выделения аномального вклада в теплоемкость, связанного с ФП, участки температурной кривой ДСМ-сигнала, далекие от температур T₀₁ и T₀₂ и представляющие собой регулярную часть, аппроксимировались полиномом (рис. 2). Аномальный вклад определялся путем вычитания регулярного вклада из данных о полном сигнале ДСМ и пересчитывался в температурную зависимость теплоемкости с использованием сведений о теплоемкости корунда, применявшегося в качестве эталона. В результате была получена информация о температурной зависимости избыточной теплоемкости ΔC_p кристалла $(NH_4)_2WO_2F_4$ (рис. 5). В таком представлении наличие низкотемпературной аномалии более очевидно, однако только на кривой нагрева. Менее ярко выраженное аномальное поведение ΔC_p в окрестности $T_{02|}$ при охлаждении может быть связано со значительным различием величин гистерезиса температур обоих переходов, приводящим к слиянию аномалий теплоемкости.

По результатам измерения теплоемкости были получены интегральные характеристики $\Phi\Pi$ в $(NH_4)_2WO_2F_4$. Величины изменений энтальпии ΔH и энтропии ΔS определялись путем интегрирования по температуре функций $\Delta C_p(T)$ и $(\Delta C_p/T)(T)$ соответственно. Поскольку на данном этапе исследований не представлялось возможным разделить аномальные вклады в теплоемкость, связанные с каждым из переходов, мы приводим суммарные величины $\sum \Delta H_i = 3200 \pm 400$ J/mol и $\sum \Delta S_i = 16.5 \pm 2.0$ J/mol · К. Из температурной зависимости избыточной теплоемкости (рис. 5) очевидно, что подавляющий вклад в величину $\sum \Delta S_i$ обусловлен изменением энтропии при T_{01} . Отсюда следует, что по крайней мере этот $\Phi\Pi$ можно отнести к превра-

Рис. 5. Температурная зависимость аномальной теплоемкости $(NH_4)_2WO_2F_4$ в режимах нагрева (1) и охлаждения (2).

щениям типа порядок—беспорядок, так как величина $\sum \Delta S_i = 1.98R = R \ln 7.3$ явно свидетельствует о наличии разупорядочения некоторых структурных элементов в ромбической фазе. Наблюдающиеся в кристалле сильные предпереходные "хвосты" двупреломления, величина которых составляет до 30% от скачка при переходе (рис. 3), также характерны для переходов типа порядок—беспорядок.

В соответствии с [8] структура $(NH_4)_2WO_2F_4$ состоит из аммонийных катионов (тетраэдры) и изолированных октаэдров. Именно эти структурные элементы довольно часто являются критическими, так как их упорядочение приводит к искажениям структуры, что, например, неоднократно наблюдалось во фторидах и оксифторидах с кубической кристаллической решеткой [9-11]. При исследовании $(NH_4)_2WO_2F_4$ методом ЯМР установлено [8], что движение частично упорядоченных октаэдров выше 230 К характеризуется динамическим ориентационным беспорядком, связанным с их свободным вращением вокруг оси, на которой лежат атомы О = W-F (межатомные расстояния $d_{W-O} = 1.737 \text{ Å}, d_{W-F} = 2.018 \text{ Å}).$ Однако уточнить координаты атомов водорода в [8] не удалось. Данное обстоятельство позволяет предполагать, что эти атомы разупорядочены в исходной фазе и их упорядочение при переходе может привести к столь существенному изменению энтропии.

Для получения более надежной информации о числе $\Phi\Pi$ и их термодинамических характеристик, структурных изменениях при $\Phi\Pi$, а также о фазовой диаграмме температура—давление в настоящее время проводятся структурные исследования искаженных фаз на монокристаллах и измерения теплоемкости методами адиабатического калориметра и ДТА под гидростатическим давлением.

Список литературы

- В.С. Сергиенко, М.А. Порай-Кошиц, Т.С. Ходашова. ЖСХ 13, 3, 461 (1972).
- [2] M. Vlasse, J.M. Moutou, M. Cervera-Marsal, J.-P. Chaminade, P. Hagenmuller. Rev. Chimie Minerale 19, 58 (1982).
- [3] A.M. Srivastava, J.F. Ackerman. J. Solid State Chem. 98, 144 (1992).
- [4] K.R. Heier, A.J. Norquist, C.G. Wilson, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 37, 76 (1998).
- [5] K.R. Heier, A.J. Norquist, P.S. Halasyamani, A. Duarte, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 38, 762 (1999).
- [6] M.E. Welk, A.J. Norquist, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 40, 5479 (2001).
- [7] P.A. Maggard, A.L. Kopf, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 41, 4852 (2002).
- [8] N.M. Laptash, A.A. Udovenko, A.B. Slobodyuk, V.Ya. Kavun. Abstracts of 14th European Symp. on Fluorine Chemistry. Poznan, Poland (2004). P. 253.
- [9] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi.Mater. Sci. Eng. R 24, 3, 81 (1998).
- [10] A.A. Udovenko, N.M. Laptash, I.G. Maslennikova. J. Fluorine Chem. 124, 5 (2003).
- [11] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ 46, 5, 888 (2004).