Стабильное и метастабильное оптическое поглощение нелинейных кристаллов LiB₃O₅

© И.Н. Огородников, А.В. Поротников, С.В. Кудяков, А.В. Кружалов, В.Ю. Яковлев*

Уральский государственный технический университет, 620002 Екатеринбург, Россия * Томский политехнический университет, 634021 Томск, Россия

(Поступила в Редакцию 20 февраля 1997 г.)

Кристаллы LiB₃O₅ (LBO) относятся к орторомбической сингонии (пространственная группа симметрии $C_{2\nu}^9 - Pna2_1$). Исходные кристаллы прозрачны в широкой области спектра 160–2600 nm. Высокая радиационнооптическая стойкость (25 GW · cm² [1]) и сравнительно высокая эффективность нелинейного преобразования создают благоприятные предпосылки для применения LBO в коротковолновой лазерной оптике. В настоящей работе приведены результаты изучения стабильного и метастабильного оптического поглощения (ОП) кристаллов LBO при возбуждении импульсным пучком электронов наносекундной длительности. Аппаратура и методика описаны ранее в [2,3]. Все исследованные кристаллы LBO были выращены Масловым и Ольховой растворрасплавленным методом [4].

Облучение электронным пучком ($\Phi = 5 \cdot 10^{15} \, \mathrm{cm}^{-2}$, $E_e = 150$ keV, $\tau = 7$ ns) в вакууме при 77 K создает в кристаллах LBO стабильные радиационные центры окраски, обусловливающие ОП в области 2.5-7.0 eV (рис. 1). Величина этого поглощения при 77 К испытывает изотермическую релаксацию с постоянной времени 2-3 h. При нагреве до комнатной температуры происходит значительное термообесцвечивание кристалла. Однако около 10% наведенной оптической плотности сохраняется при нагреве вплоть до 500 К, что обусловлено радиационным повреждением кристалла LBO [5]. Мы сосредоточим внимание на той части наведенного ОП, которая воспроизводится в циклах облучение-отжиг. Анализ контура наблюдаемой полосы ОП по методу Аленцева-Фока позволил выделить четыре перекрывающиеся элементарные полосы гауссовой формы $G_1 - G_4$ (рис. 1), параметры которых приведены в таблице.

Термическое обесцвечивание является двустадийным процессом: при 120–140 К происходит спад наведенной оптической плотности на 50%, окончательный отжиг наблюдается в интервале температур 190–230 К. Эти температурные интервалы являются характерными для релаксационных процессов в LBO: в первом из них происходит термический распад электронного B^{2+} -центра, во втором — распад дырочного O⁻-центра [6]. Примечательно, что кривая термообесцвечивания совпадает с кривой неизотермической релаксации O⁻-центра. По данным ЭПР [7], захваченная дырка локализована на *p*-орбитали иона кислорода, соединяющего трех- и четырехкоординированные ионы бора вблизи отрицательно заряженного стабилизирующего дефекта, например вакансии лития. Это позволяет заключить, что наведенное ОП LBO обусловлено О⁻-центрами. Роль этих центров может быть двоякой. С одной стороны, можно ожидать проявления оптических переходов внутри центра между расщепленными в кристаллическом поле *p*-орбиталями кислорода. В ряде оксидов (например, в ВеО [8] они обнаружены экспериментально. Однако такие переходы запрещены правилами отбора, имеют малую силу осциллятора и обусловливают полосу ОП в относительно длинноволновой части спектра. С другой стороны, возможны переходы с локального уровня О-центра на уровни валентной зоны (ВЗ). Поэтому имеет смысл сопоставить спектр наведенного ОП LBO с рассчитанными нами ранее [9] плотностью одноэлектронных состояний B3 LBO и диаграммой одноэлектронных энергий молекулярных орбиталей кластера [В₃О₇]⁵⁻. Из рис. 1 видно, что наблюдается соответствие между локальными максимумами плотности состояний ВЗ при 3.8 и 6 eV с элементарными полосами G2 и G4 в спектре ОП. Полоса G_3 сопоставима с уровнями $7b_2$ и $10a_1$, отнесенными в [9] к состояниям ВЗ LBO.

Облучение LBO электронным пучком при 290 К не приводит к появлению стабильного ОП. Однако наблюдаются короткоживущее ОП (КОП). На рис. 2 представлен спектр КОП, измеренный при 290 К непосредственно после окончания импульса возбуждения. Результаты разложения этого спектра на элементарные составляющие приведены в таблице, из которой следует, в частности, что контур спектральной полосы метаста-

Параметры элементарных полос стабильного (T = 77 K) и метастабильного (T = 290 K) оптического поглощения кристаллов LiB₃O₅

Элемен-	Стабильное ОП			Метастабильное ОП		
тарные	E_m ,	ΔE ,	I_m ,	E_m ,	ΔE ,	I_m ,
полосы	eV	eV	arb.units	eV	eV	arb. units
G_1	2.18	0.82	1.2	2.24	0.82	5.2
G_2	3.67	1.25	62	3.75	1.26	77
G_3	4.76	1.76	81	4.89	1.73	54
G_4	6.20	1.32	49	-	-	-

П р и м е ч а н и е. E_m , ΔE_m — положение максимума и ширина полосы оптического поглощения, I_m — амплитуда полосы, нормированная на 100 усл. ед. в максимуме экспериментальной полосы оптического поглощения.

Рис. 1. *а*) Спектры наведенного ОП LBO при 77 К после облучения электронным пучком (1), элементарные полосы ОП (G_1-C_4) и плотность одноэлектронных состояний B3 LBO, рассчитанная в [9] (2). *b*) Диаграма энергий одноэлектронных молекулярных орбиталей кластера [B_3O_7]^{5–} по данным [9].

бильного ОП LBO при 290 К состоит из тех же самых элементарных полос гауссовой формы, что и спектр наведенного ОП при 77 К. Это свидетельствует об идентичности оптических переходов, обусловливающих стабильное и метастабильное ОП LBO. Следует отметить, что измерение КОП LBO в более коротковолновой области спектра встречает определенные трудности ввиду значительного вклада импульсной катодолюминесценции LBO в регистрируемый световой сигнал.

Анализ кинетики КОП (рис. 3) показал, что кривая затухания оптической плотности D(t) при 290 К может быть представлена в виде суммы трех компонентов, соотношение вкладов которых при 3.5 eV составляет 1:1.49:0.37:

$$D(t) = D_0 \exp(-t/\tau_0) + D_1 \exp(-t/\tau_1) + D_2/(1+at), \quad (1)$$

где $\tau_0 = 1.2 \pm 0.2 \,\mu$ s, $\tau_1 = 33 \pm 3 \,\mu$ s, $a^{-1} = 4.0 \pm 0.4 \,\text{ms}$ постоянные времени компонентов. Спектральный состав предсказанных компонентов $D_i(E)$ представлен на рис. 2, из которого видно, что основной вклад в обе полосы КОП (G_2 и G_3) вносит "промежуточный компонент" D_1 . В то же время быстрый (D_0) и медленный (D_2) компоненты КОП LBO сосредоточены главным образом в спектральной области полосы G_2 .

Рис. 2. *а*) Спектр КОП LBO при 290 К, измеренный непосредственно после окончания возбуждающего электронного импульса (1) и элементарные полосы КОП (G_1-C_3). *b*) Спектры элементарных составляющих КОП $D_0(E)$ (1), $D_1(E)$ (2) и $D_2(E)$ (3), полученные в результате расчета для $t \to 0$.

Рис. 3. Кривая затухания оптической плотности кристаллов LBO при 3.5 eV после воздействия электронного пучка длительностью 7 ns при 290 K (1) и пример разложения ее на элементарные составляющие $D_0(t)(2), D_1(t)(3), D_0(t)+D_1(t)(4)$ и $D_2(t)(5)$. На кривой 1 точками обозначены экспериментальные данные, сплошной линией — результат аппроксимации на базе предложенной модели.

Таким образом, изучение стабильного и метастабильного ОП LBO показало, что его природа может быть связана с оптическими переходами с локального уровня дырочного О⁻-центра на уровни B3 LBO. Это имеет важное практическое значение для понимания механизма радиационно-оптической устойчивости LBO. Детальный анализ свойств и классификация этих переходов требуют дополнительного экспериментального исследования и теоретических расчетов электронной структуры О⁻центра, что составит предмет нашего следующего сообщения.

Авторы признательны В.А. Маслову за предоставление кристаллов LBO для исследования, К.В. Баутину и А.Ю. Кузнецову за помощь и участие в работе.

Список литературы

- Lin Wei, Dal Guiqing, Huang Qingzhen, Zhen An, Liang Jing Kni. J. Phys. D: Appl. Phys. 23, 8, 1073 (1990).
- [2] I.N. Ogorodnikov, A.Yu. Kuznetsov, A.V. Kruzhalov, V.A. Maslow. Rad. Measurements 24, 4, 423 (1995).
- [3] В.Ю. Яковлев. ФТТ 26, 11, 3334 (1984).
- [4] V.A. Maslov, L.A. Olkhovaya, V.V. Osiko. E.A. Shcherbakov. Presented at the 10th Int. Conf. on Crystal Growth (San Diego, USA, 1992), Book of Abstracts (1992). P. 11.
- [5] И.Н. Огородников, В.Ю. Иванов, А.Ю. Кузнецов, А.В. Кружалов, В.А. Маслов. Письма в ЖТФ 19, 11, 1 (1993).
- [6] I.N. Ogorodnikov, A.Yu. Kuznetsov, A.V. Kruzhalov, V.A. Maslow. Rad. Eff. Defect. Sol. 136, 233 (1995).
- [7] А.В. Поротников, И.Н. Огородников, С.В. Кудяков, А.В. Кружалов, С.Л. Вотяков. ФТТ **39**, *8*, 1380 (1997).
- [8] S.V. Gorbunov, V.J. Ivanov, I.N. Antsigin, A.V. Kruzhalov, B.V. Shulgin. Rad. Eff. Defect. Sol. 119–121, 893 (1991).
- [9] А.Б. Соболев, А.Ю. Кузнецов, И.Н. Огородников, А.В. Кружалов. ФТТ 36, 5, 1517 (1994).