Анализ возможных причин подавления сверхпроводимости в системе Y_{1-x}Pr_xBa₂Cu₃O_y на основе данных о поведении коэффициента термоэдс

© В.Э. Гасумянц, Е.В. Владимирская, И.Б. Патрина*

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия *Институт химии силикатов Российской академии наук, 195155 Санкт-Петербург, Россия

(Поступила в Редакцию 3 декабря 1996 г. В окончательной редакции 7 апреля 1997 г.)

> Исследованы температурные зависимости коэффициента термоэдс в образцах $Y_{1-x}Pr_xBa_2Cu_3O_y$ (x = 0-0.6). На основе анализа этих зависимостей в рамках модели узкой проводящей зоны определены основные параметры системы носителей заряда и проанализировано их изменение с ростом содержания празеодима. Обнаружено, что увеличение x приводит к очень слабому росту степени заполнения зоны электронами и значительному расширению проводящей зоны, сопровождающемуся сильной локализацией носителей заряда. На основе сравнительного анализа полученных результатов и данных для системы YBa₂Cu₃O_y в случае неизовалентных замещений в узлах бария и меди сделан вывод о том, что валентность празеодима в $Y_{1-x}Pr_xBa_2Cu_3O_y$ очень близка к значению 3+. Показано, что при различных катионных замещениях в системе Y-Ba-Cu-O существует универсальная корреляция между значение эффективной ширины проводящей зоны и критической температурой. Сделан вывод о том, что основной причиной подавления сверхпроводящих свойств $Y_{1-x}Pr_xBa_2Cu_3O_y$ является вызываемая празеодимом сильная модификация зонного спектра.

Хорошо известно, что, хотя соединение $PrBa_2Cu_3O_y$ изоструктурно $YBa_2Cu_3O_y$ и имеет сходные значения параметров решетки [1,2], сверхпроводимость в нем отсутствует, а в системе $Y_{1-x}Pr_xBa_2Cu_3O_y$ значение T_c последовательно уменьшается с ростом x, вплоть до полного подавления сверхпроводимости при критической концентрации празеодима $x_c = 0.55$ [1,3].

Выяснению причины отсутствия сверхпроводимости в PrBa₂Cu₃O_v и механизма ее подавления в Y_{1-x}Pr_xBa₂Cu₃O_y посвящено большое количество работ [3-15], однако до сих пор этот вопрос остается открытым. Было предложено несколько различных моделей подавления сверхпроводимости празеодимом. Во многом их разнообразие объясняется тем, что празеодим в разных соединениях может иметь различную валентность и ее значение в $Y_{1-x}Pr_xBa_2Cu_3O_y$ окончательно не установлено. С одной стороны, из анализа данных магнитной восприимчивости [3,16], теплоемкости [7], эффекта Холла [16], µSR-измерений [17] ряд авторов делает вывод о том, что валентность празеодима близка к 4+ или, по крайней мере, существенно больше чем 3+. На этом предположении основана так называемая модель "hole filling". В рамках этой модели падение значения T_c связывается с уменьшением числа дырок в проводящей зоне за счет внесения ионами празеодима дополнительных электронов [3,5]. Тем самым предполагается, что по механизму воздействия на критическую температуру замещениями в YBa₂Cu₃O_v. Отметим, что эта модель не может объяснить изменение критической концентрации празеодима в зависимости от типа редкоземельного

иона в $R_{1-x}Pr_xBa_2Cu_3O_y$ [18,19], а также при частичном замещении бария стронцием [20].

С другой стороны, данные различных спектроскопических исследований [12,13,21], экспериментов по неупругому рассеянию нейтронов [22,23], а также некоторых расчетов [9.24] свидетельствуют в пользу того, что валентность празеодима равна 3+, что опровергает модель hole filling. По этой причине группа альтернативных моделей основывается на предположении о взаимодействии ионов празеодима и носителей заряда (или состояний) в проводящей зоне. В одних работах [6-8] предполагается, что подавление T_c вызвано разрушением пар за счет их взаимодействия с магнитным моментом ионов празеодима, в согласии с теорией Абрикосова-Горькова (pairbreaking model); в других — что происходит сильная гибридизация 4*f*-состояний празеодима и состояний в проводящей зоне [9,10], или (в более общем смысле) взаимодействие ионов празеодима с зонными состояниями, вызывающее локализацию последних [11,12] либо существенные изменения в структуре зонного спектра YBa₂Cu₃O_v [13,14].

Некоторые авторы высказывают предположение, что вклад в наблюдаемую зависимость $T_c(x)$ в $Y_{1-x}Pr_xBa_2Cu_3O_y$ вносят как эффект hole filling, так и взаимодействие ионов Pr с носителями заряда (состояниями) в проводящей зоне [4,15].

Несмотря на интенсивные исследования системы $Y_{1-x}Pr_xBa_2Cu_3O_y$, поведение коэффициента термоэдс *S* в ней исследовано явно недостаточно. Авторы работы [25] интерпретируют рост абсолютных значений *S* с увеличением *x* как свидетельство в пользу реализации

эффекта заполнения дырочных состояний и соответственно состояния Pr^{4+} . В работе [26] обнаружено, что при высоких температурах значение коэффициента термоэдс не зависит от содержания празеодима, из чего авторы [26] делают вывод о том, что валентность празеодима в $Y_{1-x}Pr_xBa_2Cu_3O_y$, равна 3+ в области высоких температур и постепенно повышается до 4+ по мере уменьшения температуры, чем и объясняется наблюдаемый вид зависимостей S(T).

Целью данной работы является систематическое исследование коэффициента термоэлс в Y_{1-x} Pr_xBa₂Cu₃O_y (x = 0-0.6) и анализ полученных данных на основе модели узкой проводящей Эта модель позволяет определить ряд зоны [27]. параметров зонного спектра в нормальном состоянии и проанализировать изменение свойств системы носителей заряда в зависимости от содержания и сорта примеси [27-32]. Как показали наши предыдущие исследования, подобный анализ дает возможность сделать выводы о механизме влияния различных катионных замещений в YBa2Cu3Ov на свойства нормальной фазы и значение критической температуры и, следовательно, в применении к $Y_{1-x}Pr_xBa_2Cu_3O_y$, должен помочь прояснить вопрос о механизме подавления сверхпроводимости.

Исследованные образцы и методика измерений

Измерения проводились на серии керамических образцов состава $Y_{1-x}Pr_xBa_2Cu_3O_y$ с последовательным увеличением содержания празеодима (x = 0-0.6). Образцы изготавливались стандартным методом твердофазного синтеза из порошков Y_2O_3 , CuO, Ba₂CO₃ и Pr₂O₃, смешиваемых в соотношениях, соответствующих химической формуле. Смеси порошков подвергались помолу, а затем прессовались в таблетки под давлением 500 MPa. Полученные таблетки отжигались на воздухе при температуре $T = 900-950^{\circ}$ C с тремя промежуточными перемолами. Заключительный отжиг с целью насыщения образцов кислородом проводился в проточном кислороде при $T = 450^{\circ}$ C в течение двух часов, после чего образцы медленно охлаждались до комнатной температуры.

Содержание кислорода определялось методом иодометрического титрования с точностью $\pm 0.01-0.02$. Было обнаружено, что оно остается практически неизменным при увеличении содержания празеодима, составляя величину y = 6.96-6.97. На всех образцах был проведен рентгенофазовый анализ, показавший, что образцы являются однофазными с точностью 1-2%. Определенные значения параметров решетки исследованных образцов представлены в таблице. Обнаруженные тенденции в их измерении (увеличение праметров *a* и *b* и крайне слабое изменение параметра *c* с ростом *x*) совпадают с литературными данными [6,33].

Параметры решетки образцов $Y_{1-x}Pr_xBa_2Cu_3O_y$

x, Å	a, Å	b,Å	<i>c</i> , Å	$V, Å^3$
0.0	3.815	3.881	11.667	172.89
0.05	3.822	3.883	11.684	173.42
0.1	3.823	3.890	11.670	173.56
0.2	3.826	3.895	11.674	173.97
0.3	3.831	3.897	11.666	174.19
0.4	3.836	3.899	11.667	174.50
0.5	3.838	3.908	11.675	175.14
0.6	3.846	3.911	11.686	175.75

На всех исследованных образцах были проведены измерения температурных зависимостей удельного сопротивления и коэффициента термоэдс в интервале $T = T_c - 300$ К. Удельное сопротивление измерялось стандартным четырехзондовым методом на переменном токе частотой 20 Hz в режиме частотной и фазовой селекции измерительного канала. Абсолютные значения коэффициента термоэдс измерялись относительно медных электродов и рассчитывались путем последующей коррекции на абсолютные значения коэффициента термоэдс меди. Перепад температуры на образце в течение всего измерения поддерживался в интервале 1-2 К.

2. Экспериментальные результаты

Температурные зависимости нормализованного удельного сопротивления приведены на рис. 1. Их вид, включая характер трансформации при отклонении от стехиометрии, типичен для ВТСП-материалов и согласуется с литературными данными для $Y_{1-x}Pr_xBa_2Cu_3O_y$ [1,3,5,6,8]. Для близких к стехиометрии составов зависимости $\rho(T)$ линейны во всем измеряемом интервале температур. С ростом *x* абсолютные значения ρ растут и происходит постепенное уменьшение наклона кривых $\rho(T)$, которые, начиная с x = 0.4,

Рис. 1. Температурные зависимости нормализованного сопротивления в системе $Y_{1-x}Pr_xBa_2Cu_3O_y$. *х*: 1 - 0, 2 - 0.05, 3 - 0.1, 4 - 0.2, 5 - 0.3, 6 - 0.4, 7 - 0.5.

Рис. 2. Зависимость значения критической температуры от содержания празеодима в системе $Y_{1-x}Pr_xBa_2Cu_3O_y$.

демонстрируют переход к полупроводниковому типу зависимости в области низких температур. Зависимость критической температуры сверхпроводящего перехода $T_c(\rho = 0)$ от содержания празеодима представлена на рис. 2. Слабое падание T_c в диапазоне x = 0-0.1 сменяется по мере дальнейшего увеличения уровня легирования достаточно резким подавлением сверхпроводящих свойств $Y_{1-x}Pr_xBa_2Cu_3O_y$, и в интервале x = 0.5-0.6сверхпроводимость исчезает, что согласуется с данными других авторов [1,3].

Температурные зависимости коэффициента термоэдс приведены на рис. 3. Значение коэффициента термоэдс при комнатной температуре $S_{300 \text{ K}}$ увеличивается с ростом содержания празеодима в согласии с данными [25,26]. При малых отклонениях от стехиометрии коэффициент термоэдс крайне слабо зависит от температуры при T > 150-200 K; по мере роста x эта зависимость усиливается. Кроме того, на всех кривых S(T)

Рис. 3. Температурные зависимости коэффициента термоэдс в системе $Y_{1-x}Pr_xBa_2Cu_3O_y$. Точки — экспериментальные данные, сплошные линии — расчет по формулам (1), (3). *х*: 1 - 0, 2 - 0.05, 3 - 0.1, 4 - 0.2, 5 - 0.3, 6 - 0.4, 7 - 0.5, 8 - 0.6.

наблюдается хорошо выраженный максимум, который по мере увеличения x смещается в область более высоких температур. Таким образом, в целом зависимости S(T) для образцов $Y_{1-x}Pr_xBa_2Cu_3O_y$ демонстрируют все основные детали, характеризующие поведение коэффициента термоэдс в системе Y–Ba–Cu–O. Однако прежде чем приступить к анализу представленных экспериментальных результатов, необходимо отметить следующую особенность трансформации S(T). С увеличением xв $Y_{1-x}Pr_xBa_2Cu_3O_y$ наклон зависимостей S(T) при высоких температурах (выше температуры максимума на кривой S(T)) последовательно увеличивается. Заметим, что авторы [25] также обнаружили этот эффект, причем еще более усиливающийся при дальнейшем увеличении содержания празеодима вплоть до x = 1.

Анализ полученных результатов и выводы

Для интерпретации полученных результатов мы использовали модель узкой проводящей зоны, подробно описанную в наших предыдущих публикациях [27,30]. Модель основана на предположении о том, что в зонном спектре ВТСП-материалов существует резкий пик плотности состояний вблизи уровня Ферми. Аналогичное представление использовалось и рядом других авторов для объяснения необычного поведения кинетических коэффициентов в ВТСП-материалах [34-36]. Отметим, что одной из возможных и наиболее вероятных причин образования этого пика является сингулярность ван Хова в функции плотности состояний в ВТСП, предположение о наличии которой привлекалось в последнее время рядом авторов для объяснения как высоких значений критической температуры [37], так и особенностей транспортных свойств в нормальной фазе [38]. Как показано в работе [30], если уровень Ферми расположен в области пика плотности состояний, то именно узость этого пика определяет основные особенности поведения кинетических коэффициентов, что позволяет использовать простейшую аппроксимацию для функций плотности состояний D(E) и дифференциальной проводимости $\sigma(E)$ в виде прямоугольников различной ширины. Это дает возможность получить аналитические выражения для температурных зависимостей кинетических коэффициентов, используя три модельных параметра: степень заполнения зоны электронами F, равную отношению числа электронов к полному числу состояний в зоне; эффективную ширину проводящей зоны W_D и эффективную ширину интервала делокализованных состояний W_{σ} . Отметим, что изменение отношения W_{σ}/W_D при отклонении от стехиометрии характеризует изменение степени локализации состояний.

Используя описанный подход, из стандартных кинетических интегралов можно получить для химического потенциала μ и коэффициентов удельного сопротивления и термоэдс выражения следующего вида [30]:

$$\mu^* = \mu/k_B T = \ln \frac{\operatorname{sh}(FW_D^*)}{\operatorname{sh}[(1-F)W_D^*]},$$
(1)

$$\rho = \frac{1}{\langle \sigma \rangle} \frac{1 + \exp(-2\mu^*) + 2\exp(-\mu^*)\operatorname{ch} W_{\sigma}^*}{\exp(-\mu^*)\operatorname{sh} W_{\sigma}^*}, \quad (2)$$

$$S = \frac{k_B}{e} \left\{ \frac{W_{\sigma}^*}{\operatorname{sh} W_{\sigma}^*} \left[\exp(-\mu^*) + \operatorname{ch} W_{\sigma}^* - \frac{1}{W_{\sigma}^*} (\operatorname{ch} \mu^* + \operatorname{ch} W_{\sigma}^*) \right] + \operatorname{ch} W_{\sigma}^* + \operatorname{ch} W_{\sigma}^*$$

где k_B — постоянная Больцмана, e — заряд электрона, $\langle \sigma \rangle$ — среднее по зоне значение дифференциальной проводимости, $W_D^* \equiv W_D/2k_BT$, $W_\sigma^* \equiv W_\sigma/2k_BT$.

Для определения значений параметров системы носителей заряда мы использовали экспериментальные температурные зависимости коэффициента термоэдс, для которого, как видно из (3), расчетные кривые могут быть получены с точностью до абсолютных значений, в то время как для удельного сопротивления возможно только качественное сравнение вида расчетной и экспериментальной зависимостей (значение ρ определяется с точностью до постоянного множителя $1/\langle \sigma \rangle$). Расчетные кривые S(T), демонстрирующие наилучшее согласие с экспериментальными данными для каждого образца и использованные для определения значений модельных параметров, приведены на рис. 3 сплошными линиями. Отметим, что зависимости $\rho(T)$, рассчитанные по формуле (2) при найденных для каждого образца значениях модельных параметров, демонстрируют постепенное уменьшение наклона по мере увеличения содержания празеодима. Для образцов с x > 0.3 переход к полупроводниковому типу зависимости происходит при температурах, соответствующих полученным в эксперименте с точностью $\pm 10-20$ К. Таким образом, расчетные кривые $\rho(T)$ качественно совпадают с экспериментальными.

Рис. 4. Зависимости эффективной ширины проводящей зоны W_D и степени заполнения зоны электронами *F* от содержания празеодима в системе $Y_{1-x}Pr_xBa_2Cu_3O_y$.

На рис. 4 приведены концентрационные зависимости эффективной ширины проводящей зоны и степени ее заполнения электронами. Видно, что увеличение содержания празеодима приводит к существенному расширению зоны и одновременно к увеличению степени ее заполнения. Что касается степени локализации носителей заряда, то, как показывают наши расчеты, она резко (в 2-2.5 раза) возрастает в интервале x = 0-0.3, а при дальнейшем увеличении х продолжает расти несколько медленнее. Таким образом, характер изменения параметров системы носителей заряда при увеличении x в соединении $Y_{1-x}Pr_xBa_2Cu_3O_y$ в целом совпадает с обнаруженным ранее для других типов отклонений от стехиометрии в системе YBa₂Cu₃O_v (роста дефицита кислорода [27,30] или неизовалентных замещений в подрешетках бария и меди [28,30,32]). Однако при количественном сравнении этих изменений обнаруживается ряд существенных особенностей, присущих исследованному в данной работе соединению. Значения F при замещении $\Pr \rightarrow Y$ растут очень незначительно по сравнению с другими системами, в которых барий или медь замещаются на элемент с большей валентностью (La или Eu и Fe или Со соответственно). Так, при примерно одинаковой величине F \approx 0.5, соответствующей стехиометрическому (нелегированному) образцу, степень заполнения достигает значений F = 0.557 для YBa₂Cu_{3-r}Co_rO_v при x = 0.25 и F = 0.548 для $YBa_{2-x}La_xCu_3O_y$ при x = 0.5, в то время как для $Y_{1-x}Pr_xBa_2Cu_3O_v$ F = 0.526 при x = 0.6. Кроме того, в первых двух из перечисленных систем при увеличении уровня легирования происходит в отличие от случая замещения Pr — Y рост содержания кислорода, что должно приводить к некоторой компенсации роста степени заполнения, вызываемого непосредственно введением примеси с большей валентностью.

Тем не менее обнаруженное в исследуемой системе уменьшение концентрации дырок в проводящей зоне с ростом содержания празеодима (о чем свидетельствует рост значений F) нельзя объяснить, если считать, что происходит изовалентное замещение $Pr^{3+} \rightarrow Y^{3+}$. Заполнение дырочных состояний может быть вызвано двумя различными причинами.

1) Согласно данным ряда авторов [15,39], незначительное количество ионов празеодима размещается в узлах бария. В этом случае все ионы празеодима имеют валентность 3+, но изовалентное замещение $Pr^{3+} \rightarrow Y^{3+}$ сочетается с неизовалентным $Pr^{3+} \rightarrow Ba^{2+}$.

2) Происходит замещение $Pr \rightarrow Y$, но валентность Pr несколько выше 3+.

Однако в силу незначительности роста F, а также слабого изменения параметров решетки и содержания кислорода в $Y_{1-x}Pr_xBa_2Cu_3O_y$ можно сделать вывод о том, что доля ионов Pr^{3+} в узлах бария в первом случае или ионов Pr^{4+} в узлах иттрия во втором крайне незначительна. Следовательно, средняя валентность празеодима в $Y_{1-x}Pr_xBa_2Cu_3O_y$ если и не равна 3+, то очень близка к этому значению. Это согласуется с выводом авторов работы [26], полученным для области высоких температур

на основе анализа поведения коэффициента термоэдс. В то же время, согласно нашим результатам, наблюдаемый рост коэффициента термоэдс при понижении температуры объясняется не увеличением при этом валентности празеодима [26], а эффектом локализации состояний, вызванным его введением в решетку. Как показано в работе [30], именно последовательное увеличение доли локализованных состояний в проводящей зоне (уменьшение отношения W_{σ}/W_{D}) приводит, согласно расчетам по нашей модели, к усилению температурной зависимости коэффициента термоэдс при температурах выше температуры максимума на кривой S(T) и смещению этого максимума в область более высоких температур, т.е. к тем особенностям трансформации зависимостей S(T), которые и наблюдаются в эксперименте для соединения $Y_{1-x}Pr_xBa_2Cu_3O_v$ c ростом x.

Что касается существенного увеличения ширины проводящей зоны, обнаруженного в $Y_{1-x}Pr_xBa_2Cu_3O_y$, то оно на первый взгляд выглядит достаточно необычным, поскольку ранее подобный эффект связывался нами с разупорядочением в подсистеме цепочечного кислорода, вызываемым введением неизовалентной примеси [27–32]. В данном случае подобного разупорядочения не происходит, о чем свидетельствует слабое изменение содержания кислорода и параметров решетки. Это позволяет заключить, что модификация проводящей зоны в $Y_{1-x}Pr_xBa_2Cu_3O_y$ вызвана непосредственно воздействием празеодима, что подтверждает предположение, высказанное в работах [11–14].

Таким образом, полученные нами данные позволяют сделать вывод о том, что наиболее вероятной причиной подавления сверхпроводимости в $Y_{1-x}Pr_xBa_2Cu_3O_y$ является не эффект hole filling, а модификация зонного спектра (значительное расширение проводящей зоны и сильная локализация состояний на ее краях), вызванная,

Рис. 5. Корреляционные зависимости значения критической температуры от степени заполнения зоны электронами для случаев различных замещений в системе Y–Ba–Cu–O. *1* — Y(Pr)–Ba–Cu–O, *2* — Y–Ba(La)–Cu–O, *3* — Y–Ba–Cu(Co)–O.

по-видимому, гибридизацией состояний иона празеодима с зонными состояниями.

В заключение мы хотели бы проанализировать степень влияния различных катионных замещений в YBa₂Cu₃O_v на параметры зонного спектра и критическую температуру. Ранее мы сделали вывод о том, что одной из главных причин падения Т_с является уменьшение значения плотности состояний на уровне Ферми, которое в рамках нашей модели вызвано двумя причинами: общим падением плотности состояний вследствие расширения зоны (роста значений W_D) и смещением положения уровня Ферми из середины зоны, т.е. области максимума D(E), к верхнему ее краю (ростом значений степени заполнения зоны электронами) [27-32]. Для выяснения относительной роли этих двух эффектов, а также сравнения характера влияния различных примесей, включая исследованное в данной работе замещение Pr — Y, мы сравнили зависимости критической температуры от значений двух модельных параметров (F и W_D) для трех систем с замещениями в различных катионных подрешетках: $Y_{1-x}Pr_xBa_2Cu_3O_v$, $YBa_{2-x}La_xCu_3O_y$ и $YBa_2Cu_{3-x}Co_xO_y$ (рис. 5,6). Как видно из этих рисунков, зависимость $T_c(F)$ имеет свой вид для каждой серии образцов, тогда как кривая $T_c(W_D)$ является универсальной для систем с различными типами замещений. Это позволяет заключить, что именно вызванное введением примеси расширение проводящей зоны является основной причиной падения значения критической температуры в системе YBa2Cu3Ov. При этом важно, что обнаруженная зависимость $T_c(W_D)$ сохраняется и для соединения $Y_{1-x}Pr_xBa_2Cu_3O_y$. Это явно указывает на то, что празеодим, так же как и другие легирующие примеси, воздействует на сверхпроводящие свойства YBa2Cu3Ov за счет вызываемого им изменения параметров проводящей зоны.

Таким образом, проведенный анализ температурных зависимостей коэффициента термоэдс в системе

Рис. 6. Корреляционная зависимость значения критической температуры от эффективной ширины проводящей зоны для случаев различных замещений в системе Y–Ba–Cu–O. Обозначение точек то же, что и на рис. 5.

Y_{1-x}Pr_xBa₂Cu₃O_y с последовательным увеличением содержания празеодима на основе модели узкой зоны позволяет сделать следующие выводы.

1) Валентность иона празеодима в соединении $Y_{1-x}Pr_xBa_2Cu_3O_y$ очень близка к значению 3+ и остается неизменной при уменьшении температуры.

2) Введение празеодима в решетку $YBa_2Cu_3O_y$ вызывает последовательное увеличение ширины проводящей зоны и степени локализации состояний на ее краях, что и объясняет наблюдаемую трансформацию зависимостей S(T) при увеличении содержания празеодима.

3) Основной причиной подавления сверхпроводящих свойств $Y_{1-x}Pr_xBa_2Cu_3O_y$ празеодимом является вызываемая им модификация зонного спектра — главным образом, сильное расширение зоны и как следствие уменьшение значения плотности состояний на уровне Ферми.

4) Корреляция между значениями эффективной ширины проводящей зоны и критической температурой является универсальной для системы Y–Ba–Cu–O при замещениях в различных катионных подрешетках.

Список литературы

- J.K. Liang, X.T. Xu, S.S. Xie, G.H. Rao, X.Y. Shao, Z.G. Duan. Z. Phys. B 69, 2–3, 137 (1987).
- [2] H. Oesterreider, M. Smith. Mater. Res. Bull. 22, 1709 (1987).
- [3] Y. Dalichaouch, M.S. Torikachvili, E.A. Early, B.W. Lee, C.L. Seaman, K.N. Yang, H. Zhou, M.B. Maple. Solid State Commun. 65, 9, 1001 (1988).
- [4] J.J. Neumeier, T. Bjornholm, M.B. Maple, I.K. Schuller. Phys. Rev. Lett. 63, 22, 2516 (1989).
- [5] L. Soderholm, K. Zhang, D.G. Hinks, M.A. Beno, J.D. Jorgensen, C.U. Serge, I.K. Schuller. Nature **328**, 6131, 604 (1987).
- [6] J.L. Peng, P. Klavins, R.N. Schelton, H.B. Radousky, P.A. Hahn, L. Bernardez. Phys. Rev. B 40, 7A, 4517 (1989).
- [7] A. Kebede, C.S. Lee, J. Schwegler, J.E. Crow, T. Mihalisin, G.H. Myer, R.E. Salomon, P. Scholttmann, M.V. Kuric, S.H. Bloom, R.P. Guertin. Phys. Rev. B 40, 7, 4453 (1989).
- [8] L.M. Paulius, C.C. Almasan, M.B. Maple. Phys. Rev. B47, 17, 11627 (1993).
- [9] G.V. Guo, W.M. Timmerman. Phys. Rev. **B41**, *10*, 6372 (1990).
- [10] I.L. Neumeier, M.B. Maple, M.S. Torikachvili. Physica C 56, 4, 574 (1988).
- [11] X.X. Tang, A. Manthiram, J.B. Goodenough. Physica C161, 5&6, 574 (1989).
- [12] J. Fink, N. Nucker, H. Romberg, M. Alexander, M.B. Maple, J.J. Neumeier, J.W. Allen. Phys. Rev. B 42, 7B, 4823 (1990).
- [13] U. Neukirch, C.T. Simmons, P. Sladeczek, C. Laubschat, O. Strebel, G. Kaindl, D.D. Sarma. Europhys. Lett. 5, 6, 567 (1988).
- [14] A.P. Reyes, D.E. Maclaughlich, M. Takigava, P.C. Hammel, R.N. Meffer, J.D. Thompson, J.E. Crow, A. Kebede, T. Migalisin, J. Schwegler. J. Appl. Phys. 67, 9, 5032 (1990).
- [15] C. Infante, M.K. Elmously, R. Dayal, M. Husain, S.A. Siddiqi, P. Ganguly. Physica C167, 5&6, 640 (1990).

- [16] A. Matsuda, K. Kinoshita, T. Ishii, H. Shibata, T. Waranabe, T. Yamada. Phys. Rev. B 38, 4, 2910 (1988).
- [17] C.L. Seaman, J.J. Neumeier, M.B. Maple, L.P. Le, G.M. Luke, B.J. Sternlieb, Y.J. Uemura, J.H. Brewer, R. Kadono, R.F. Kiefl, S.R. Krietzman, T.M. Riseman. Phys. Rev. B42, 10, 6801 (1990).
- [18] S.K. Malik, C.V. Tomy, P. Bhargava. Phys. Rev. B44, 13, 7042 (1991).
- [19] Y. Xu, W. Guan. Phys. Rev. B45, 6, 3176 (1992).
- [20] R. Suryanarayanan, A. Das, I. Zelenay, L.F. Castro. In: Fourth Euro Ceramics. Proc. IV Europ. Ceramics Soc. Conf. / Ed. A. Barone, D. Fionary, A. Tampieri. Riccione (1995). V. 6. P. 185.
- [21] S. Horn, J. Cai, S.A. Shaheen, Y. Jeon, M. Croft, C.L. Chang, M.L. den Boer. Phys. Rev. B 36, 7, 3895 (1987).
- [22] H.D. Jostarndt, U. Walter, J. Harnischmacher, J. Kalenborn, A. Severing, E. Holland-Moritz. Phys. Rev. B46, 22, 14872 (1992).
- [23] G. Hilscher, E. Holland-Moritz, T. Holubar, H.D. Jostarndt, V. Nekvasil, G. Schaudy, U. Walter, G. Fillion. Phys. Rev. B 49, *1*, 535 (1994).
- [24] G.L. Goodman, C.-K. Loong, L. Soderholm. J. Phys.: Condens. Matter 3, 1, 49 (1991).
- [25] A.P. Goncalvis, I.C. Santos, E.B. Lopes, R.T. Henriques, M. Almeida, O. Figueiredo, J.M. Alves, M. Godinho. Physica C153–155, 910 (1988).
- [26] B. Fisher, J. Genossar, L. Patlagan, J. Ashkenazi. Phys. Rev. B 43, 4, 2821 (1991).
- [27] В.Э. Гасумянц, С.А. Казьмин, В.И. Кайданов, В.И. Смирнов, Ю.М. Байков, Ю.П. Степанов. СФХТ 4, 7, 1280 (1991).
- [28] V.E. Gasumyants, V.I. Kaidanov, E.V. Vladimirskaya. Chin. J. Phys. **31**, *6*, 999 (1993).
- [29] V.E. Gasumyants, E.V. Vladimirskaya, I.B. Patrina. Physica C 235–240, 1467 (1994).
- [30] V.E. Gasumyants, V.I. Kaidanov, E.V. Vladimirskaya. Physica C 248, 2&3, 255 (1995).
- [31] Е.В. Владимирская, В.Э. Гасумянц, И.Б. Патрина. ФТТ **37**, *7*, 1990 (1995).
- [32] V.E. Gasumyants, E.V. Vladimirskaya, I.B. Patrina. In: Proc. IV World Congress on Supercond / Ed. K. Kirshen, C. Burnham. NASA Conf. Public. Houston (1994). P. 537.
- [33] T.H. Meen, Y.C. Chen, M.W. Lin, H.D. Yang, M.F. Tai. Jpn. J. Appl. Phys. **31**, *12A*, 3825 (1992).
- [34] S. Bar-Ad, B. Fisher, J. Ashkenazi, J. Genossar. Physica C 156, 5, 741 (1988).
- [35] В.И. Цидильковский, И.М. Цидильковский. ФММ 65, 1, 83 (1988).
- [36] V.V. Moshchalkov. Solid State Commun. 73, 11, 777 (1990).
- [37] K. Gofron, J.C. Campuzano, A.A. Abrikosov, M. Lindross, A. Bansil, H. Ding, D. Koelling, B. Dabrowski. Phys. Rev. Lett. 73, 24, 3302 (1994).
- [38] D.W. News, C.C. Tsuei, R.P. Huebener, P.J.M. van Bentum, P.C. Pattniak, C.C. Chi. Phys. Rev. Lett. 73, 12, 1695 (1994).
- [39] H.A. Blackstead, J.D. Dow. Phys. Rev. **B 51**, 17, 11830 (1995).