Спектрально-кинетические характеристики переходного поглощения в кристаллах фторида кальция

© Е.П. Чинков, В.Ф. Штанько

Томский политехнический университет, 634004 Томск, Россия

(Поступила в Редакцию 12 августа 1996 г. В окончательной редакции 13 января 1997 г.)

Методом абсорбционной спектроскопии с наносекундным разрешением изучено переходное поглощение в номинально чистых кристаллах CaF_2 при воздействии импульса ускоренных электронов. Оптическое поглощение, обусловленное автолокализованными экситонами, представлено в виде суперпозиции полос с полуширинами не более 0.2 eV как в электронном, так и дырочном компонентах. Выделенные группы полос приписаны поглощению *F*, *H*-пар в различных конфигурациях. Обнаружено закономерное изменение спектрально-кинетических характеристик в зависимости от расстояния между компонентами пары.

Облучение ионизирующей радиацией номинально чистых кристаллов флюорита при температурах не выше комнатной приводит преимущественно к образованию так называемых автолокализованных экситонов (АЭ) [1–3]. Обычно выделяют электронный и дырочный компоненты поглощения АЭ. При низкой температуре (~ 10 K) релаксация наведенного поглощения во флюоритах описывается набором экспоненциальных зависимостей, а их тепловое смешивание в CaF₂ и SrF₂ наступает уже при ~ 50 K [1].

На основе анализа симметрии сигналов ОДМР (ODMR) [4] в работе [1] предполагается, что АЭ во флюоритах представляют собой пару близлежащих Р-и Н-центров, причем рассматриваются четыре их возможные конфигурации. Однако было не ясно, соответствуют ли отдельные компоненты в релаксации поглощения АЭ временам жизни триплетных подуровней одной конфигурации либо они отражают времена жизни нижайших состояний разных конфигураций. Позднее в [5] на основе данных спектроскопии каскадного возбуждения показано, что АЭ в SrF2 при 10К образуются по крайней мере в двух конфигурациях. Теоретический анализ энергетических затрат на образование различных конфигураций АЭ выполнен в [6]. Для описания их структуры в [7] введен геометрический фактор. Однако для кристаллов CaF₂ вопрос об образовании различных конфигураций АЭ не получил должной экспериментальной проверки [1,3,8].

Выяснению этого вопроса и посвящена настоящая работа. С этой целью детально исследованы спектральнокинетические характеристики переходного поглощения в кристаллах CaF_2 при воздействии импульса ускоренных электронов при температурах заведомо выше 50 К.

1. Эксперимент

Номинально чистые образцы выращены методом Стокбаргера в ГОИ (Санкт-Петербург) В.М. Рейтеровым. Концентрация отстаточных примесей не превышала 10^{-5} mol.%. Методика измерений подобна описанной в [9] и использовалась в [3]. Однако в настоящих экспериментах применена более совершенная конструкция ускорителя, при разработке которой учтены жесткие требования по стабилизации параметров цепей питания и управления емкостного накопителя (термостатированный компаратор). Максимальная энергия электронов — 0.28 MeV, длительность импульса на полувысоте — 10 ns, плотность энергии — 0.103 J/cm². Дозиметрия ocvществлялась калориметрическим методом. Временное разрешение составляло $\sim 7 \,\mathrm{ns}$, а спектральное было равно 0.002 в видимой и 0.006 eV в ультрафиолетовой области спектра. В режиме фотоэлектрической регистрации погрешность однократного измерения величины оптического пропускания на фиксированных длинах волн не превышала 5%, а при многократных измерениях — 2%. С целью исключения влияния дозовой нагрузки на форму спектров переходного поглощения применялось обесцвечивание образца нефильтрованным светом ртутной лампы высокого давления. Контроль осуществлялся при помощи измерений на параллельных сколах свежих образцов.

2. Экспериментальные результаты

Характерный вид спектров переходного оптического поглощения кристалла CaF₂, измеренных при 80 и 295 К через 10 ns после окончания импульса ускоренных электронов, представлен на рис. 1 кривыми 1 и 2 соответственно. Спектрально-кинетические характеристики наблюдаемого поглощения (характерное время жизни дефектов при фиксированной температуре, спектральное положение максимумов доминирующего поглощения) только качественно согласуются с известными параметрами АЭ в кристаллах CaF₂ [1,3,8]. Например, в релаксации поглощения АЭ на 2.75 eV при комнатной температуре найдены два компонента ($1.7\,\mu s~(\sim 92\,\%)$ и 34 µs) [1], а при 80 К — только один (38.2 µs) [8]. Мы также нашли, что ~ 90% оптической плотности на 2.75 eV при 295 К описывается быстрым компонентом. Однако, во-первых, значение постоянной времени оказалось неодинаковым и изменялось в области электронного компонента поглощения АЭ в пределах 0.8-1.3 µs

Рис. 1. Спектры переходного оптического поглощения кристалла CaF₂, измеренные при 80 (1) и 295 K (2–4) через 10 ns (1, 2), $0.5 \,\mu$ s (3) и 17.5 μ s (4) после окончания импульса ускоренных электронов.

при ошибке не более $0.1 \,\mu$ s. Во-вторых, спектр медленного компонента (кривая 4 на рис. 1) отличается от спектра АЭ (кривая 2 на рис. 1), а кинетики в полосах на 3.1 и $3.5 \,\text{eV}$ носят многоэкспоненциальный характер.

Сложный спектральный состав переходного поглощения (рис. 1) во многом согласуется с ранее измеренным в CaF₂ при 10 K в [1], где он был приписан ошибкам измерений, хотя авторы и отметили факт неоднородной его релаксации. Проследить за релаксацией при 295 К сложно: полосы перекрываются (ср. кривые 2, 3 на рис. 1), а характерные времена жизни дефектов, как отмечено выше, весьма близки. Поэтому для анализа спектров применен метод Аленцева–Фока [10].

На рис. 2, *а*, *b* в качестве примера представлены спектры, полученные при разложении быстрого компонента поглощения в кристалле CaF₂ при 295 К. Оказалось, что в видимой и ультрафиолетовой областях спектра можно выделить полосы, характеризующиеся близкими значениями коэффициентов спада (*K*) наведенного поглощения ко времени $0.5 \,\mu$ s. По этому признаку полосы объединены в группы, которые обозначены *A*, *B* и *C*. Спектральное положение максимумов на рис. 2 показано стрелками. Коэффициенты спада соотносятся как $K_A > K_B > K_C$. Вследствие перекрытия полос разложение дает качественную картину спектрального распределения поглощения тех или иных дефектов, а не соотношение их характерных времен жизни.

В группах *В* и *С* каждой полосе из области электронного компонента поглощения АЭ соответствуют дветри полосы из области дырочного. В группе *А* двум электронным переходам соответствуют два дырочных. В группах *В* и *С* совпадение значений *К* вполне удовлетворительное, а в группе *А* приблизительное. Мы полагаем, что последнее обусловлено проявлением разной природы дефектов. Во-первых, из данных рис. 1 (кривая *4*) и рис. 2 видно, что полосы на 2.55, 3.15, 3.5 и 4.55 eV присутствуют в спектрах быстрого и медленного компонентов поглощения. Во-вторых, температура кристалла оказывает различное влияние на интенсивности этих полос. Например, если при 295 К в спектре медленного компонента полосы на 3.15 и 3.5 eV доминируют, а на 2.55 и 4.55 eV проявляются в виде небольшого фона (кривая 4 на рис. 1), то с ростом температуры интенсивности последних резко возрастают наряду с полосами *F*и *H*-центров окраски (3.2 и 4.0 eV соответственно) [3]. Совокупность этих фактов позволяет в группе полос *A* выделить группу *D* (полосы на 2.55 и 4.55 eV).

Резкое изменение значений K и отсутствие "плато" в спектральной области $3.0-3.7 \,\mathrm{eV}$ (группа A) предполагают помимо короткоживущего компонента присутствие более инерционного. Оба приписаны АЭ, поскольку при разложении исключен вклад долгоживущего поглощения (кривая 4 на рис. 1). Поэтому группа A дополнительно разделена еще на две (A1 и A2). Обозначение A2 использовано для более инерционного компонента. Спектральное различие этих групп точно не установлено. Отношение K для групп A1 и C равно ~ 2 при 295 К.

Характерное время жизни АЭ при 77 К равно 57 [1] и ~ 40 μ s [3,8]. Релаксация наведенного поглощения изучена в интервале 0.01–40 μ s. Коэффициенты спада представлены на рис. 2, *c*. Как при 295, так и при 80 К в спектрах переходного поглощения выделены группы *A*, *B* и *C*. Группа *A* также разделена на две и обе приписаны АЭ; обозначения соответствуют принятым при разложении при 295 К (в [8] в этой области спектра при 80 К также обнаружены два компонента 0.42 и 4.2 μ s, но они приписаны *F*- и *H*-центрам окраски). Из данных рис. 2, *c* видно, что при 80 К изменилось

Рис. 2. Спектры оптического поглощения кристалла CaF₂, полученные путем разложения по методу Аленцева–Фока разностного спектра $D(10 \text{ ns})-D(0.5 \,\mu\text{s})$, измеренного при 295 K, после вычитания медленного компонента из разностного спектра (*a*) и после вычитания спектра, показанного на рис. 2, *a*, из разностного спектра (*b*). *c* — коэффициенты спада $D(10 \text{ ns})/D(40 \,\mu\text{s})$ переходного оптического поглощения при 80 K в кристалле CaF₂.

соотношение коэффициентов спада: $K_{A2} < K_B < K_C$, но $K_{A1} > K_B$ и $K_{A1}/K_C = 1.2$.

Необходимо отметить, что отношение K_{A1}/K_C является функцией не только температуры, но и предыстории номинально чистых кристаллов CaF₂. Результаты будут опубликованы отдельно.

Анализ полученных результатов позволяет установить следующие закономерности в релаксации переходного поглощения в CaF₂: 1) электронный и дырочный компоненты поглощения АЭ представляют собой суперпозицию полос с полуширинами ~ 0.2 eV при 295 K; 2) быстрый компонент в релаксации поглощения АЭ состоит по крайней мере из трех групп полос A, B и C, каждая из которых характеризуется своим спектральнокинетическим составом, при 295 и 80 К необходимо деление группы A на две (A1 и A2); 3) понижение температуры от 295 до 80 К сопровождается увеличением вклада в интегральный спектр групп полос B и C, но уменьшением A1 и D, группы полос A и D наблюдались в спектрах быстрого и медленного компонентов поглощения.

Авторы [5] установили, что спектральное распределение короткоживущего компонента поглощения АЭ в SrF₂ при 10 K (59 μ s, полосы на 2.34 и 4.13 eV) как бы включает в себя распределение наиболее долгоживущего компонента (7.7 ms, 2.7 и 3.35 eV). Из данных рис. 2 видно, что группа полос *A* расположена в спектральном интервале, ограниченном группой *B*, которая в свою очередь ограничена группой *C*. Здесь мы отмечаем качественное согласие результатов разложения спектра переходного поглощения в кристалле CaF₂ при 295 K с аналогичным в SrF₂ при 10 K [5].

С другой стороны, в кристалле CaF₂, так же как и в SrF₂, в релаксации поглощения АЭ при 10 K выделены три временны́х компонента: $83 \,\mu$ s, $870 \,\mu$ s и 8.8 ms. Причем в релаксации наиболее низкоэнергетической полосы на 2.75 eV преобладает наиболее короткоживущий компонент [1]. Исключив из рассмотрения группу A1 (рис. 2), хотя она качественно согласуется с данными [8], мы делаем аналогичный вывод, поскольку полосы на 2.75 и 2.9 eV доминируют в спектрах переходного поглощения как при 10 K [1], так и при 80 K (кривая *1* на рис. 1).

Таким образом, выделенным группам полос можно поставить в соответствие времена жизни дефектов при 10 К из работы [1].

3. Обсуждение результатов

На рис. 3 схематично представлены четыре возможные конфигурации АЭ в решетке флюорита. В составе АЭ F-центр занимает узельную позицию аниона, а H-центр ориентирован примерно вдоль $\langle 111 \rangle$ -оси. Считается, что дырка на ядре экситона локализована преимущественно на межузельном фторе ($\sim 70\%$), т.е. так, как на H-центре [11]. В качестве основного параметра при идентификации выделенных групп полос использовано электрон-дырочное разделение, т.е. расстояние от позиции вакансии в анионном узле до межузельного фтора

Рис. 3. Четыре возможные конфигурации F, H-пар в решетке CaF₂. Нумерация соответствует принятой в [1]. H-центр представлен в виде гантели, лежащей вдоль направления $\langle 111 \rangle$.

в составе дырочного ядра. Данный параметр идентичен геометрическому фактору (R), введенному в [7] для описания структуры экситона, однако далее мы обсудим и предполагаемое отличие.

Согласно классификации, самой тесной F, H-парой является конфигурация 2, а самой разделенной — конфигурация 1 (рис. 3). Конфигурация 2 обычно рассматривается как наиболее правильная геометрия АЭ: в работах по ОДМР [4,12] не замечено различие между конфигурациями, и только она вносит положительный вклад в значение параметра D [7], описывающего в спиновом гамильтониане отклонение окружения АЭ от кубической симметрии. Конфигурация 2 является наиболее короткоживущей в SrF₂ при10 K [5].

В таблице приведены предполагаемая идентификация выделенных групп полос, а также времена жизни дефектов при 10 К и их геометрические факторы. Видно, что по мере увеличения параметра R наблюдается дискретное смещение максимумов полос из области как электронного, так и дырочного компонентов поглощения АЭ в направлении положений максимумов полос поглощения пространственно разделенных F- и H-центров (3.31 и 4.03 eV соответственно [13,14]). Максимумы дырочных переходов на 3.5 eV и в области 3.8–4.0 eV расположены по энергии ниже соответствующего перехода молекулярного иона F_2^- [14]. Однако снижение энергии дырочных переходов в поглощении АЭ наблюдается и в других флюоритах: 3.35 eV в SrF₂ [5] и 3.4 eV в BaF₂ [1].

В работе [7] геометрический фактор R был взят с параметрами для "чистого" H-центра (межъядерное разделение ~ 3.6 а.u.). Однако очевидно, что присутствие электрона определенным образом влияет на энергию дырочных переходов. Например, для щелочно-галоидного кристалла (ЩГК) КІ в [15] оценено межъядерное расстояние в возбужденном π -излучательном состоянии, которое оказалось ~ 67% от расстояния в идеальном кристалле по сравнению с 58% для автолокализованной

Е.П. Чинков, В.Ф. Штанько

Параметры автолокализованных экситонов в CaF2

Группа полос	Конфигурация	E, eV	H, eV	<i>R</i> , a.u. [6]	Время жизни µs [1]
A1 A2 B C D	$\begin{array}{c} 4^{*}(1^{*}) \\ 4 (1) \\ 2 \\ 3 \\ 2^{*}(3^{*}) \end{array}$	3.15 3.15 2.75 2.90 2.55	3.55 3.55 4.2, 4.3 3.8, 4.0 4.55		

П р и м е ч а н и е . *E*, *H* — положение максимумов полос в электронном и дырочном компонентах соответственно. 1 а.u. = 0.0529 nm.

дырки (V_k -центра). Если аналогичная ситуация имеет место во флюоритах, то значения R, взятые из [7] (см. таблицу), являются заниженными для наиболее тесных конфигураций. Возможно, что большее межъядерное разделение является причиной расщепления дырочных переходов для конфигураций 2 и 3 (см. таблицу).

Данные таблицы позволяют выявить тенденцию увеличения характерного времени жизни дефектов в конкретной конфигурации с ростом параметра разделения электрон-дырка. Дефекты, ответственные за появление группы А2, являются наиболее долгоживущими. Поэтому мы вправе предположить, что ей соответствует наиболее пространственно разделенная конфигурация, но сделать однозначный выбор между конфигурациями 1 и 4 нельзя. Группа А1 и А2 имеют близкие спектральные, но разные кинетические характеристики. Это предполагает, что конфигурация, ответственная за группу А1, должна быть достаточно разделенной. Однако условие $K_{A1} > K_C$ требует, чтобы она являлась наиболее тесной. Противоречие снимается, если предположить, что время жизни дефектов в конкретной конфигурации зависит от пространственной ориентации дырочного ядра относительно позиции вакансии. Возможно, что появление группы А1 связано с образованием модифицированных конфигураций (4* или 1*). Аналогичные рассуждения относительно группы D приводят к тому, что за нее может быть ответственна одна из модификаций наиболее тесных конфигураций (2* или 3*). Характерно, что обе группы полос А1 и D обнаруживают тенденцию к росту при увеличении температуры кристалла при облучении. Либо в более "рыхлой" решетке у дырочного ядра дополнительно появляется вращательная степень свободы, либо ядро занимает не только октаэдрическое междоузлие. В последнем случае, например, при образовании краудиона вдоль (110)-оси формируется сложная структура дырочного ядра типа F_3^{2-} . По-видимому, это и является причиной появления переходов в высокоэнергетической области спектра (рис. 1). Аналогом в этом отношении могут являться ЩГК [16]. Эксперименты с фемтосекундным разрешением свидетельствуют о том, что процесс формирования сложного ядра из одногалоидной автолокализованной дырки может завершаться еще до стадии захвата электрона [17].

Приписывая конкретной конфигурации определенную группу полос, мы таким образом ставим ей в соответствие систему с электронными и дырочными переходами. Идея о расщеплении АЭ на электронную и дырочную конфигурации ранее рассматривалась в основном на базе данных ОДМР [4,7,12]. Закономерности, полученные в настоящей работе на основе оптических измерений, должны рассматриваться как дополнительные свидетельства, указывающие на структуру АЭ как на систему двух хорошо разделенных взаимодействующих диполей.

В связи с этим следует остановиться на происхождении временных компонентов в релаксации АЭ и низкотемпературного предела константы скорости реакции [1]. Мы полагаем, что здесь имеет место аналогия с процессами, рассматриваемыми в известной теории безызлучательной туннельной рекомбинации [18], использующей двухмодовые факторы Франка-Кондона, отражающие наличие не только высокочастотных внутримолекулярных, но и других типов низкочастотных колебаний. Воздействие фононной подсистемы кристалла может приводить к изменению энергии частицы, совершающей переход, либо параметров потенциального барьера. Как показано в [18], именно последнее обстоятельство определяет экспоненциальную зависимость константы скорости перехода от температуры. Тогда в рамках предложенной гипотезы изменение характерного времени жизни АЭ в конкретной конфигурации как функции температуры кристалла при облучении [1-3] находит простое объяснение как изменение степени перекрытия волновых функций электронного и дырочного компонентов экситона (при сближении дефектов барьер сужается и уменьшается), а низкотемпературный предел соответствует замораживанию ($\sim 50 \text{ K}$ для CaF₂ и SrF₂) междефектных колебаний. При повышенных температурах следует принимать во внимание возможность разрыва связи в дырочном ядре экситона. Об этом может свидетельствовать резкое изменение энергии активации уменьшения характерного времени жизни АЭ (с 0.026 до $\sim 0.4 \,\mathrm{eV}$ для CaF₂) [2,3], сопровождаемое изменением спектрального состава свечения [3].

Воздействие импульсного электронного облучения приводит к появлению в кристаллах флюорита довольно разнообразной картины разупорядочения в анионной подрешетке. В настоящей работе мы описали только некоторые из числа возможных конфигураций F, H-пар. При этом в состав выделенных групп не включены высокоэнергетические переходы (рис. 2, a, b), которые, как мы предположили, могут свидетельствовать о более диффузном по сравнению с Н-центром распределении заряда на дырочном ядре экситона. С ростом температуры кристалла при облучении явно прослеживается тенденция изменения распределения F, H-пар в зависимости от расстояния между компонентами. Некоторые из числа выделенных групп полос мы наблюдали в спектрах как быстрого (т.е. обусловленного АЭ), так и медленного компонентов поглощения кристалла CaF₂. Причины этого не совсем ясны, однако дефекты, ответственные за эти компоненты, оказываются связанными единой адиабатической потенциальной поверхностью для движения дырочного ядра [19]. Ранее это наблюдалось при облучении при температуре $\sim 6 \, {\rm K}$ [20].

Модель АЭ в виде близкой пары *F*- и *H*-центров подтверждена экспериментально и теоретически для ЩГК (см., например, [21-23]). В зависимости от наличия в кристалле свободного пространства между галоидами (параметра Рабина–Клика (S/D) [24]) образуются различные конфигурации АЭ, отличающиеся степенью смещения дырочного ядра вдоль направления (110) [25]. В плотноупакованных решетках (S/D < 0.5 на диаграмме Рабина-Клика) смещение ядра АЭ невелико $(\sim 2 \, \text{a.u.})$ [23], а распределение внешнего электрона сосредоточено во второй координационной сфере [22]. В таких кристаллах оптические характеристики АЭ различных конфигураций (близких (F-H)-пар) и пространственно разделенных F- и H-центров не совпадают [3,26]. В более рыхлых кристаллах аксиальный сдвиг ядра достигает 4-5 a.u. [23], волновая функция внешнего электрона становится более компактной [22] и в качестве АЭ могут выступать так называемые короткоживущие (F-H)-пары [27].

Таким образом, впервые проведенный в настоящей работе детальный анализ переходного поглощения, наводимого в кристаллах CaF_2 импульсом ускоренных электронов, позволил установить спектрально-кинетические характеристики по крайней мере трех конфигураций АЭ и их закономерное изменение как функции расстояния между компонентами (F-H)-пары. Обнаруженные закономерности качественно согласуются с теми, которые наблюдались, например, при облучении SrF_2 или ЩГК, и свидетельствуют об отсутствии какого-либо специфического влияния строения решетки на первичные продукты радиолиза.

Список литературы

- R.T. Williams, M.N. Kabler, W. Hayes, J.P.H. Stott. Phys. Rev. B14, 2, 725 (1976).
- [2] Н.Н. Ершов, Н.Г. Захаров, П.А. Родный. Опт. и спектр. 53, *1*, 89 (1982).
- [3] Л.А. Лисицына, В.М. Лисицын, Е.П. Чинков. Изв. вузов. Физика. 1, 13 (1995).
- [4] P.J. Call, W. Hayes, M.N. Kabler. J. Phys. C: Sol. Stat. Phys. 8, 4, L60 (1975).
- [5] T. Eshita, K. Tanimura, N. Itoh. Phys. Stat. Sol. (b) 122, 2, 489 (1984).
- [6] M. Adair, C.H. Leung, K.S. Song, J. Phys. C: Sol. Stat. Phys. 18, 28, L909 (1985).
- [7] K.S. Song, C.H. Leung, J.M. Spaeth. J. Phys.: Cond. Matter. 2, 30, 6373 (1990).
- [8] K. Tanimura, T. Katoh, N. Itoh. Phys. Rev. **B40**, *2*, 1282 (1989).
- [9] Э.Д. Алукер, В.В. Гаврилов, Р.Г. Дейч, С.А. Чернов. Быстропротекающие радиационно-стимулированные процессы в щелочно-галоидных кристаллах. Зинатне, Рига (1987). 183 с.
- [10] М.В. Фок. Тр. ФИАН 59, 3 (1972).
- [11] S. Parker, K.S. Song, C.R.A. Catlow, A.M. Stoneham. J. Phys. C: Sol. Stat. Phys. 14, 4009 (1981).
- [12] Н.Г. Романов, В.А. Ветров, П.Г. Баранов. Письма в ЖЭТФ 37, 7, 325 (1983).

- [13] P.J. Call, W. Hayes, J.P.H. Stott, A.E. Hughes. J. Phys. C: Sol. Stat. Phys. 7, 14, 2417 (1974).
- [14] W. Hayes, R.F. Lambourn, J.P.H. Stott. J. Phys. C: Sol. Stat. Phys. 7, 14, 2429 (1974).
- [15] А.М. Стоунхэм. Теория дефектов в твердых телах М. (1978). Т. 2. 357 с.
- [16] T. Eshita, K. Tanimura, N. Itoh, H. Nishimura. Phys. Soc. Jap. 54, 11, 4418 (1985).
- [17] T. Shibata, S. Iwai, T. Tokizaki, K. Tanimura, A. Nakamura, N. Itoh. Phys. Rev. B49, 18, 13255 (1994).
- [18] В.И. Гольданский, Л.И. Трахтенберг, В.Н. Флеров. Туннельные явления в химической физике. М. (1986). 294 с.
- [19] Е.П. Чинков, В.Ю. Яковлев. Тез. VIII Междунар. конф. по радиационной физике и химии неорганических материалов. Томск (1993). Ч. 2. С. 126.
- [20] T. Eshita, K. Tanimura, N. Itoh. Nucl. Instrum. Meth. Phys. Res. B1, 452 (1984).
- [21] D. Block, A. Wasiela, Y. Merle D'Aubigne. J. Phys. C: Sol. Stat. Phys. 11, 20, 4201 (1978).
- [22] П.Г. Баранов. Изв. АН СССР. Сер. физ. 45, 254 (1981).
- [23] L.F. Chen, K.S. Song, C.H. Leung. Nucl. Instrum. Meth. Phys. Res. 46, 1–4, 216 (1990).
- [24] H. Rabin, C. Klick. Phys. Rev. 117, 4, 1005 (1960).
- [25] K. Kan'no, K. Tanaka, T. Hayashi. Rev. Sol. Stat. Sci. 4, 383 (1990).
- [26] K. Tanimura, N. Itoh, T. Hayashi, H. Nishimura. Phys. Soc. Jap. 61, 1366 (1992).
- [27] И.П. Денисов, В.Ю. Яковлев. ФТТ 32, 2, 384 (1990).