Интегралы переноса в примесных кластерах смешанной валентности. Спектры поглощения и комплексного эффекта Фарадея

© В.Я. Митрофанов, Л.Д. Фальковская*, А.Я. Фишман

Институт металлургии Уральского отделения Российской академии наук, 620016 Екатеринбург, Россия

* Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

(Поступила в Редакцию 11 октября 1996 г.)

1. К настоящему времени имеется достаточно экспериментальных данных по спектрам ФМР [1], ЯМР [2], инфракрасного и оптического поглощения [3], а также эффекта Фарадея [4], указывающих на присутствие центров смешанной валентности (CB) в ряде хромовых халькогенидных шпинелей с неизовалентным замещением или нестехиометрией. Целью настоящей работы является анализ возможностей непосредственной оценки интегралов переноса между 3*d*-ионами в кластере CB из спектров примесного поглощения и эффекта Фарадея в системах указанного типа.

2. В качестве модели орбитально-вырожденного центра CB рассмотрен, как и в работе [5], комплекс тригональной симметрии, состоящий из двух магнитных ионов с конфигурацией $3d^n$ (орбитально-невырожденное состояние) и одного иона с конфигурацией $3d^{n\pm 1}$ (кубический *T*-терм). Девять нижайших орбитальных уровней кластера CB классифицируются по неприводимым представлениям $\Gamma = 2A_1 + A_2 + 3E$ группы C_{3v} . Рассмотрим для краткости случай, когда энергия расщепления *T*-терма в тригональном поле больше интегралов переноса между 3*d*-ионами. Тогда выражения для энергий шести нижайших состояний в комплексе CB с t_{2g} -дыркой имеют вид [5]

$$E(A_1) = h_0 + b_1 - 2b_2, \quad E(A_2) = -h_0 + b_1 + 2b_2,$$

$$E(E) = -b_1/2 - d, \qquad E(E') = -b_1/2 + d,$$

$$d = \left\{ [h_0 + b_2]^2 + (1.5b_1)^2 \right\}^{1/2},$$

$$b_1 = \left[-2b(t_{2\xi}, t_{2\xi}) + b(t_{2\zeta}, t_{2\zeta}) + b(t_{2\xi}, t_{2\eta}) \right]/3,$$

$$b_2 = -\left[b(t_{2\xi}, t_{2\xi}) + b(t_{2\zeta}, t_{2\zeta}) + 2b(t_{2\xi}, t_{2\eta}) \right]/3, \quad (1)$$

где энергии отсчитываются от основного ферромагнитного состояния кристалла без учета спин-орбитального взаимодействия, $b(t_{2\mu}, t_{2\nu})$ — интегралы переноса t_{2g} -дырки в комплексе СВ между t_{2g} -состояниями $\mu, \nu = \xi, \zeta, \eta, h_0$ — величина низкосимметричного кристаллического поля источника избыточного заряда на ионе с конфигурацией $3d^{n\pm 1}$.

Наибольший интерес представляет поведение комплекса CB в случае, когда нижайшим оказывается двукратно вырожденное состояние ($\Gamma = E$) с энергией E(E). Согласно (1), такая ситуация имеет место при $h_0, b_2 > 0$ и $b_1/b_2 \ge 1/2$. Операторы дипольного момента, описывающие переход с основного *E*-терма на возбужденные уровни кластера с энергиями $E(A_1), E(A_2)$ и E(E'), имеют вид

$$P_{x} = \sqrt{3} m_{x} p(U_{E\vartheta} + \sqrt{3} U_{E\varepsilon}),$$

$$P_{y} = \sqrt{3} m_{y} p(U_{E\vartheta} + \sqrt{3} U_{E\varepsilon}),$$

$$P_{z} = -2\sqrt{3} m_{z} p U_{E\vartheta},$$
(2)

где оси x, y, z направлены вдоль осей четвертого порядка кубического кристалла, m — единичный вектор, параллельный тригональной оси кластера $U_{E\vartheta}$ и $U_{E\varepsilon}$ — орбитальные операторы, преобразующиеся по представлению E группы $C_{3\nu}$. Параметр p зависит от типа перехода $E \to \Gamma$: $p = \beta(E \to \Gamma)qR/3$, где R — расстояние между источником избыточного заряда q и ближайшими к нему 3d-ионами кластера, $\beta(E \to \Gamma)$ — фактор редукции для соответствующих переходов:

$$|eta(E o A_1)|^2 = 1 - (b_2 + h_0)/d,$$

 $|eta(E o A_2)|^2 = 1 + (b_2 + h_0)/d,$
 $|eta(E o E')|^2 = (9/4)(b_1/d)^2.$

Примесные кластеры приводят к существенной перенормировке симметричной $\varepsilon(\omega)$ и аномальному росту антисимметричной $\varepsilon_a(\omega)$ компонент тензора диэлектрической проницаемости $\varepsilon_{ij}(\omega)$

$$\varepsilon(\omega) = \varepsilon_{\infty} + 4\pi \sum_{s} \sum_{r=1}^{4} \langle \langle P_{\underline{x}, rs} | P_{\underline{y}, rs} \rangle \rangle_{\omega}, \qquad (3)$$

$$\varepsilon a(\omega) = -2\pi i \sum_{s} \sum_{r=1}^{4} \left[\langle \langle P_{\underline{x},rs} | P_{\underline{y},rs} \rangle \rangle_{\omega} - \langle \langle P_{\underline{y},rs} | P_{\underline{x},rs} \rangle \rangle_{\omega} \right].$$
(4)

Здесь ε_{∞} — сумма электронного и решеточного вкладов в диэлектрическую проницаемость при значениях ω , намного превышающих резонансные частоты ω_r в комплексе СВ (в шпинелях $\varepsilon_{\infty} = 10$ [6]), индексы *s* и *r* нумеруют примесные кластеры и указывают на тип тригональной оси, символ $\langle\!\langle \dots | \dots \rangle\!\rangle_{\omega}$ означает Фурьеобраз двухвременной гриновской функции, ось *z* в системе координат <u>*x*</u>, <u>*y*</u>, <u>*z*</u> параллельна намагниченности **М** кристалла.

Рис. 1. Спектральное распределение для линий поглощения $E \to \Gamma_i$ комплексами CB при наличии в системе случайных кристаллических полей (**M** || [001]). $w = \omega/\omega_i, \lambda/\omega_i = 0.2, \Delta/\omega_i = 0.2.$

Вклад центров CB в коэффициент поглощения $\alpha(\omega)$ и эффект Фарадея $F(\omega)$ может быть выражен через указанные функции $\varepsilon(\omega)$ и $\varepsilon_a(\omega)$

$$\alpha(\omega) = \sqrt{2} k_0 \text{Im}\varepsilon(\omega) / [\text{Re}\varepsilon(\omega) + |\varepsilon(\omega)|]^{1/2},$$

$$F(\omega) = k_0 \varepsilon_a(\omega) [\mu(\omega)/\varepsilon(\omega)]^{1/2}/2,$$
(5)

где $|\mathbf{k}_0| = \omega/c$ ($\mathbf{k}_0 \parallel \mathbf{M}$), c — скорость света, $\mu(\omega)$ — симметричная компонента тензора магнитной проницаемости.

Коэффициент поглощения $\alpha(\omega)$ имеет наиболее простой вид для образцов, намагниченных вдоль кристаллографических осей [001],

$$\alpha(\omega) = \gamma(\omega)k_0 p^2 C_{JT} \sum_i (\omega - \omega_i) \Delta^{-2} \vartheta \left[\omega - \omega_i - |\lambda|/(2\sqrt{3}) \right] \exp\left\{ -\left[4(\omega - \omega_i)^2 - \lambda^2/3\right]/\Delta^2 \right\}, \quad (6)$$

где $\gamma(\omega) = 32\sqrt{2} \pi^2/[\operatorname{Re}\varepsilon(\omega) + |\varepsilon(\omega)|]^{1/2}$, C_{JT} — объемная концентрация центров CB; $\vartheta(z)$ — тэта-функция, $\omega_i = E(\Gamma_i) - E(E)$, $\Gamma_i = A_1, A_2, E', \lambda$ — константа спинорбитальной связи в кластере CB, Δ — дисперсия двух-компонентных случайных полей $h_{E\vartheta}$ и $h_{E\varepsilon}$ на примесных центрах.

Выражение для комплексного фарадеевского вращения $F(\omega)$ при произвольном направлении **М** можно представить в виде

$$F(\omega) = 9\pi [\mu(\omega)/\varepsilon(\omega)]^{1/2} k_0 p^2 C_{JT}$$
$$\times \sum_{r=1}^4 \sum_i C^2(\mathbf{n}, r) \langle (\lambda/E_r) \omega/[\omega_{r1}^2 - \omega^2] \rangle_c,$$

 $C(\mathbf{n}, r) - m_x^{(r)} m_y^{(r)} n_z + m_x^{(r)} m_z^{(r)} n_y + m_y^{(r)} m_z^{(r)} n_x, \ \mathbf{n} = \mathbf{M} / |\mathbf{M}|,$ $\omega_{ri} = \omega_i + E_r / 2,$

$$E_r = \left[3\lambda^2 C^2(\mathbf{n}, r) + (h_{E\vartheta})^2 + (h_{E\varepsilon})^2\right]^{1/2}, \qquad (7)$$

где символ $\langle \ldots \rangle_c$ означает усреднение по случайным полям, E_r — энергия расщепления основного *E*-терма случайными полями и спин-орбитальным взаимодействием.

Типичные частотные зависимости для коэффициента поглощения и угла фарадеевского вращения приведены на рис. 1-3. Форма линий поглощения при наличии случайных кристаллических полей показана на рис. 1. При этом величины ω_i , пропорциональные интегралам переноса $b_{1,2}$, оказываются пороговыми для частотной зависимости коэффициента поглощения. Они же определяют резонансные частоты в спектре $F(\omega)$. Отметим, что для рассматриваемых переходов характерно наличие тонкой структуры линий (рис. 2), связанной со спинорбитальным взаимодействием. Соответственно должна иметь место и зависимость спектра от направления намагниченности М. Характерной особенностью спектра $F(\omega)$ является зависимость знака эффекта Фарадея (рис. 3) от типа перехода: для переходов $E \rightarrow A_1, A_2$ и $E \rightarrow E, E'$ эти знаки оказываются противоположными (переход $E \rightarrow E$ связывает расщепленные состояния основного Е-терма).

Рис. 2. Влияние спин-орбитального взаимодействия на форму линий $E \to \Gamma_i$ в спектре $F(\omega)$ в отсутствие случайных кристаллических полей (**M** || [111]). $w = \omega/\omega_i, \lambda/\omega_i = 0.2, \Delta/\omega_i = 0.$

Рис. 3. Частотная зависимость примесного вклада в фарадеевское вращение за счет переходов $E \to E, E', A_1$ и $A_2(\mathbf{M} \parallel [001]). \ w = \omega/h_0, \ b_1 = b_2 = 0.3h_0, \ \lambda/h_0 = 0.1.$

Эффекты переноса заряда должны также существенно влиять на спектры $\alpha(\omega)$ и $F(\omega)$ исследуемых систем в диапазоне частот, соответствующем возбуждению иона Cr^{3+} из основного состояния ${}^{4}A_{2}(t_{2g}^{3})$ в состояние ${}^{4}T_{2g}(t_{2g}^{2}e_{g})$. Рост спектральной интенсивности на указанных частотах с увеличением концентрации примесей дает дополнительную возможность идентификации типа кластеров CB.

Экспериментально наблюдаемые особенности примесного вклада в спектры $\alpha(\omega)$ [3] и $F(\omega)$ [4] кристаллов CdCr₂S₄ имеют место в диапазоне частот $\omega = 700-2000$ см⁻¹. Если реализуется рассмотренный механизм переходов между состояниями комплекса CB, то величина исследуемых интегралов переноса оказывается порядка 10^3 сm⁻¹.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 97-03-33577).

Список литературы

- Н.И. Солин, Л.Д. Фальковская, А.А. Самохвалов. ФТТ 36, 8, 3090 (1994).
- [2] Н.М. Ковтун, В.Я. Митрофанов, В.К. Прокопенко, А.Я. Фишман, А.А. Шемяков. ФНТ 17, 1, 110 (1991).
- [3] F. Moser, R.K. Ahrenkiel, E. Carnall, T. Coburn, S.L. Lyu, T.H. Lee, T. Martin, D. Pearlman. J. Appl. Phys. 42, 4 1449 (1971).
- [4] T.J. Coburn, F. Moser, R.K. Ahrenkiel, K.J. Teegarden. IEEE Trans. Magn. MAG-7, 3, 392 (1971).
- [5] М.А. Иванов, В.Я. Митрофанов, Л.Д. Фальковская, А.Я. Фишман. ФТТ **38**, *12* (1996).
- [6] M.N. Iliev, G. Güntherodt. Phys. Stat. Sol. (b) 98, K9 (1980).