Неизотермическая релаксация и электроперенос в монокристаллах Ca₃Ga₂Ge₄O₁₄

© А.Е. Носенко, В.Н. Шевчук

Львовский государственный университет им. И. Франко, 290005 Львов, Украина

(Поступила в Редакцию 4 ноября 1996 г.)

Впервые изучены фото- и электропроводность, токи термостимулирванной поляризации и деполяризации, диэлектрическая проницаемость и диэлектрические потери нецентросиммтрических кристаллов Ca₃Ga₂Ge₄O₁₄ структурного типа тригонального кальций-галлогерманата (КГГ) в интервале температур 100–700 К в воздушной среде и в вакууме. Особенности температурного поведения КГГ связываются, в частности, с влиянием электрически активных дефектов и частичного разупорядочения катионной подрешетки структуры кристалла, обусловливающих существование полярных образований (диполей) нескольких сортов. Определены некоторые параметры электропереноса и электрически активных дефектов, вызывающих эффекты поляризации и релаксации зарядов. Делается вывод о реализации дипольной релаксации в КГГ как в новом представителе класса материалов, в котором реориентация диполей как системы подвижных локальных искажений структуры существенно влияет на физические свойства.

Ацентрическим кристаллам Ca₃Ga₂Ge₄O₁₄ структурного типа тригонального кальций-галлогерманата (КГГ), как нелегированным, так и активированным Cr³⁺, Nd^{3+} , постоянно уделяется внимание [1–4] в связи с их ценными для технических применений оптиколюминесцентными, пьезоэлектрическими и другими свойствами. Однако электрические характеристики КГГ, в частности электропроводность, диэлектрическая проницаемость, термостимулированные токи, релаксация объемного заряда и медленной составляющей поляризации, а также спектральная зависимость фотопроводимости, не изучались. Такие данные об ионно-электронных процессах и электрически активных дефектах необходимы для определения многих физических свойств, а также для практического использования КГГ. Обнаруженные особенности температурных зависимостей оптических свойств [5] также стимулируют изучение таких зависимостей электрических параметров, чувствительных к различного рода изменениям в кристаллах. Некоторые предварительные результаты исследования электрофизических свойств КГГ представлены нами в [6,7].

1. Методика эксперимента

В настоящей работе рассматриваются температурные зависимости электропроводности σ неактивированных монокристаллов КГГ на постоянном токе, диэлектрическая проницаемость ε и диэлектрические потери tg δ . Релаксационные процессы и электрически активные дефекты изучались также методами термостимулированной поляризации (ТСП) и термостимулированной деполяризации (ТСД).

Спектральное распределение фоточувствительности (ФЧ) S_{λ} кристаллов исследовалось в фотоэлектретном режиме [8] (фотополяризация в максимуме ФЧ при длине волны $\lambda_p \simeq 240$ nm) при сканировании фотоэлектрета малоинтенсивным монохроматиче-

ским УФ-светом, нормированным на постоянное количество квантов. Кристаллы КГГ были выращены методом Чохральского. Измерения проводились в различных кристаллографических направлениях на образцах размером $10 \times 10 \times 0.5$ mm в вакууме на установке для исследования высокоомных кристаллов [9] в интервале температур T = 100-500 К. Для измерений в воздушной среде в диапазоне температур T = 300-750 К образцы помещались в термостатируемую (не хуже ± 1 К) ячейку, изготовленную из кварца.

Диэлектрическая проницаемость и диэлектрические потери измерялись на частоте 1 kHz контактным методом с помощью измерителя емкости Е 8-4 или цифрового вольтфарадомметра Р 385. Токи проводимости, ТСП или ТСД регистрировались электрометрическим вольтметром В 7-30 в режиме линейного нагрева со скоростью $\beta = 0.2 \,\mathrm{K/s}$ с применением аквадаговых электродов или (в случае ТСД) с использованием конденсаторной измерительной ячейки по методике [10], существенно не отличающейся от стандартной. Варьированием условий поляризации [11] (напряжения поляризующего поля U_p различной полярности, времени поляризации τ_p , температуры поляризации Т_p) с учетом температуры максимумов T_m пиков ТСД (ТСП), их ширины и интенсивности *I_m* определялась природа возникшей поляризации. Температура образцов фиксировалась с помощью термопары медь-константан или хромель-алюмель (высокие температуры).

2. Фото- и электропроводность

При нормальных условиях кристаллы КГГ являются типичными диэлектриками и имеют низкую темновую проводимость $\sigma \simeq 10^{-16} - 10^{-15} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$. В области длин волн $\lambda = 220-260$ nm наблюдается фотопроводимость кристаллов, величиной примерно на три порядка превышающая равновесную σ . Ширина запрещенной

T = 300 K, $U_p = 500$ V, $\tau_p = 5$ min, $\lambda_p = 240$ nm.

зоны, оцененная по спектру оптического поглощения, составляет ~ 5.0 eV. Значение, полученное из спектральной зависимости ФЧ $S_{\lambda} = f(\lambda)$ (рис. 1), составляет ~ 5.3 eV. Кривые $S_{\lambda} = f(\lambda)$ имеют форму сложного пика, интенсивности составляющих которого (максимумы при 240 и 230 nm) зависят от взаимного расположения вектора электрического поля, совпадающего в данных экспериментах с направлением светового возбуждающего потока, и выбранных осей (z и x = y) КГГ. ФЧ КГГ при снижении температуры уменьшается. Форма кривых $S_{\lambda} = f(\lambda)$ указывает на сложный характер строения дна зоны проводимости кристаллов, а также на реализацию различных электронных переходов при возбуждении светом из области интенсивного оптического поглощения. В примесной области неактивированного КГГ ФЧ отсутствует. Токи фотоотклика короткозамкнутого образца при возбуждении прямоугольными импульсами сильно поглощаемого света имели отрицательную полярность, что считается [12] характерным в случае дырочного полупроводника.

Рассмотрим равновесную электропроводность КГГ. Низкотемпературная часть экспериментальных кривых $\sigma = f(T)$ (T < 450 K) в различной геометрии опытов немонотонно изменяется с увеличением T и зависит от термической предыстории образцов, окружающей среды (вакуум, воздух), релаксационных процессов, вызванных накоплением зарядов и (или) медленной составляющей поляризации. На рис. 1 приведены типичные кривые $\sigma = f(T)$ в координатах Аррениуса. Зависимости $\sigma = f(T)$ можно описать известным [13] экспоненциальным законом

$$\sigma = \sigma_0 \exp(-E_a/kT). \tag{1}$$

Параметры σ_0 и E_a , определенные по прямолинейным участкам кривых $\ln \sigma = f(f/T)$, сведены в табл. 1. Прямолинейные участки характеризуются различными наборами σ_0 и E_a , зависящими также от кристаллографического направления. Последняя зависимость закономерна в случае описываемых тензором второго ранга анизотропных кристаллов, к которым относится КГГ. При T < 450 К электроперенос, в частности, не лишен влияния релаксаторов, формирующих нескомпенсированные пространственно неоднородные заряды. Анизотропия кристаллографического расположения релаксаторов дипольной природы с соответствующим образованием объемных зарядов, компенсирующих поля ориентированных диполей, отражается при T < 450 K на зависимости $\sigma = f(T)$ от геометрии образцов. Природа предполагаемых диполей, как отмечено далее, связана с особенностями реального кристаллического строения КГГ.

Кривые $\ln \sigma = f(1/T)$ привлекают внимание в температурных интервалах 500–530 К (*z*-срез) и 530–560 К (*x*-*y*-срез), где σ резко увеличивается примерно на два порядка. При этом, включая температуры до и после указанных интервалов, энергии активации претерпевают изменения (табл. 1), характерные для случая преобладающего ионного электропереноса, качественно описываемого теорией возникновения суперионной проводимости.

При температурах, предшествующих резкому экспоненциальному увеличению σ , может наблюдаться аномальный ход тока проводимости. Экспериментально фиксировалось уменьшение тока в режиме линейного нагрева, а также инверсия его знака. Прогрев образцов во время измерения σ уменьшает или полностью устраняет такие аномалии. Проводимость КГГ при любой температуре проведенных исследований меньше в направлении x = y, чем вдоль оси z.

Выше 450 К кривые $\ln \sigma = f(1/T)$ совпадают для выбранного кристаллографического направления для всех следующих одно за другим нагреваний. Отсутствует также влияние окружающей среды, поляризации образцов,

Таблица 1. Экспериментальные значения параметров σ_0 и E_a кристаллов КГГ для *z*- и *x*-*y*-срезов (I и II соответственно)

ТК	$\sigma_0,\Omega^{-1}\cdot\mathrm{cm}^{-1}$		E_a , eV	
1, К	Ι	II	Ι	II
300-450	$1.7\cdot 10^{-13}$	$4.5 \cdot 10^{-13}$	0.03	0.07
450-500		$1.6 \cdot 10^{-12}$		0.21
500-530	$1.6 \cdot 10^{15}$	3.0	2.09	0.85
530-560	52.4	$2.4 \cdot 10^{16}$	1.12	2.51
560-650		16.4		1.48

их предыстории. Можно считать, что мы находимся за пределами структурно-чувствительной области и что в кристалле формируются условия надежного измерения зависимости $\sigma = f(T)$, удовлетворяющей (1).

3. Диэлектрическая проницаемость и релаксационные потери

Экспериментальные зависимости $\varepsilon = f(T)$ приведены на рис. 2. При комнатной температуре КГГ обладает значениями диэлектрической проницаемости $\varepsilon_b \simeq 25$ и $\varepsilon_c \simeq 20$ (измерения вдоль осей x = y и z соответственно), а также низкими диэлектрическими потерями tg $\delta \simeq 10^{-3}$. В области немонотонной зависимости $\sigma = f(T)$ при T < 480 К обнаружено аномальное поведение ε . Так, кривая $\varepsilon_c = f(T)$ содержит широкий неэлементарный пик с $\varepsilon_c = 34.5$ в максимуме при 370 К. Выше 500 К ε_c слабо зависит от T, а при T > 700 К наблюдается ее резкое увеличение.

В области температур рассмотренного пика в зависимости $\varepsilon_c = f(T)$ кривая $\varepsilon_b = f(T)$ (рис. 2) претерпевает слабую зависимость от температуры, резкий рост при 370 < T < 410–470 К и дальнейшее монотонное увеличение с изменением температуры. В результате циклирования нагрев–охлаждение в случае x–y-среза область (380–460 K) резкого увеличения ε сдвигается в сторону высоких температур и свидетельствует этим в пользу релаксационного характера рассматриваемых температурных изменений ε . В этой области температурного смещения ε_b кривая $\varepsilon_c = f(T)$ содержит малоинтенсивный дополнительный пик ($T_m = 450$ K).

Полные диэлектрические потери (типичная кривая $tg \delta = f(T)$ показана на рис. 2) от 300 до 450 К

Рис. 2. Температурные зависимости диэлектрической проницаемости (1-4) и диэлектрических потерь (5). Измерения проводились параллельно оси z (1, 5) и вдоль направления x = y (2-4); 2, 3 — измерения во время первого и второго нагревания соответственно, 4 — измерения в режиме охлаждения.

постепенно увеличиваются с ростом температуры. При T > 650 K tg δ увеличивается быстрее и достигает при 750 K значения 0.1. Таким образом, экспериментальная зависимость tg $\delta = f(T)$ в интервале температуры 300–750 K содержит две (в районе 450 и 640 K) точки перегиба. Значения tg δ , как и ε , немонотонно зависят от температуры и при нагреве, и при охлаждении. Релаксационный пик диэлектрических потерь сильно размыт, очевидно, из-за влияния электропроводности или же из-за зависимости от концентрации релаксаторов.

В первом приближении и в геометрии прямоугольного конденсатора [14] при условии малости краевых эффектов значение ε пропорционально измеренной емкости C образца толщиной d

$$\varepsilon = Cd/\varepsilon_0 S,\tag{2}$$

где ε_0 — диэлектрическая постоянная, *S* — площадь электродов. Поскольку поляризация пропорциональна ε , каждая компонента поляризации будет вносить определенный вклад в ε . Температурную зависимость ε определяют, таким образом, электропроводность на постоянном токе, температурные изменения дипольных моментов, обусловливающих ориентационную поляризацию, и температурные зависимости диэлектрической релаксации. Суммарную диэлектрическую проницаемость однородного диэлектрика можно записать [14]

$$\varepsilon(T) = \varepsilon_{\infty} + \varepsilon_1(T) + \varepsilon_2(T) + \varepsilon_3(T),$$
 (3)

где ε_{∞} — высокочастотная диэлектрическая проницаемость, $\varepsilon_1(T)$, $\varepsilon_2(T)$ и $\varepsilon_3(T)$ — соответственно вклады от электропроводности, дипольной поляризации и температурной зависимости диэлектрической релаксации. Последнее включает в себя изменения дипольных моментов и объемно-зарядовой поляризации с температурой образца. В частности, вклад от ионной электропроводности, как известно [15], при низких частотах аналитически можно представить в виде

$$\varepsilon_i = \varepsilon_r + \sigma_i \tau / \varepsilon_0,$$
 (4)

где ε_r соответствует диэлектрической проницаемости без учета взаимного движения ионных носителей заряда, σ_i — ионная составляющая электропроводности, τ — постоянная времени, определяющаяся соотношением

$$\tau = (1/h) \exp(W/kT).$$
(5)

В (5) h — частота попыток иона преодолеть потенциальный барьер высотой W.

В случае низких частот ν и одного времени релаксации диэлектрические потери связаны с ε и σ соотношением [16]

$$\operatorname{tg} \delta(T) \simeq \sigma(T) / 2\pi \nu \varepsilon_0 \varepsilon(T). \tag{6}$$

Таким образом, при $\nu = \text{const} < 10$ kHz зависимости $\varepsilon(T)$ и tg $\delta(T)$ кристаллов КГГ на основе (3)–(6) определяются в основном электропроводностью и поляризационными эффектами. По-видимому, при T > 450 K доминирует первый фактор, а при 300 < T < 450 K — второй.

4. Эффекты поляризации

Ацентрические кристаллы КГГ, как следует из исследования электрооптического эффекта [17], принадлежат к полярной точечной группе симметрии 32. В таких кристаллах пироэлектричества не возникает. В наших опытах в условиях незажатого образца связь с поляризацией образцов КГГ может иметь лишь линейная часть небольшого по величине наведенного внешним электрическим полем обратного пьезоэлектрического эффекта, отсутствующего вдоль оси третьего порядка. Максвелловское время релаксации τ_{μ} при температуре 295 К при оценке по соотношению [11]

$$\tau_{\mu} = \varepsilon \varepsilon_0 / \sigma \tag{7}$$

находится в пределах $10^5 - 10^6$ s.

Образцы КГГ *z*- и *x*-*y*-срезов в интервале температур 100–500 К претерпевают серию релаксационных процессов, связанных с остаточной гетерозарядной поляризацией. Последняя вызывает пики тока ТСД (ТСП) в узких температурных интервалах. Наиболее интенсивные пики тока ТСД с малой полушириной наблюдаются при температурах, предшествующих началу резкого увеличения σ (в районе 450 К), а также при *T* < 350 К. При определенных условиях опытов регистрируется интенсивный пик с $T_m = 365-375$ К.

Термоактивированные токи могут претерпевать инверсию знака. Так, на зависимости I = f(T) (кривая 2 на рис. 3) наблюдается инверсия знака тока ТСД в районе 280 К. В других опытах (в частности, на кривых ТСП) инверсия фиксировалась в районе 370 и 460 К. В модели блокирующих электродов природу инверсионных пиков тока можно связать с переполяризацией во внутреннем поле электрета [11] в случае дипольного механизма поляризации или с остаточной поляризацией предществующих формирований поляризационного состояния.

Типичные спектры ТСП и ТСД изученных кристаллов, полученные при различных условиях, представлены на рис. 3. Отметим, что максимальные пики тока ТСП

Рис. 3. Типичные обзорные спектры термостимулированных токов в КГГ. I — ТСП под действием $U_p = +50$ V, 2, 3 — ТСД при условиях измерения: $U_p = 30$ V, $\tau_p = 3$ min, $T_p = 470$ и 350 K соответственно.

Таблица 2. Характеристики наиболее типичных релаксационных процессов в КГГ, определенных по кривым ТСД

Номер п/п	T_m, \mathbf{K}	$I_m, 10^{-12} \mathrm{A}$	E_t , eV	ω , $10^{10} \mathrm{s}^{-1}$
1	162	1.0	0.38	1.76
2	184	0.9	0.43	1.56
3	228	0.8	0,53	1.26
4	246	0.6	0.57	1.16
5	265	0.3	0.62	1.08
6	280	1.3	0,65	1.02
7	310	3.6	0.72	0.92
8	320	4.2	0.74	0.90
9	330	2.7	0.77	0.87
10	350	0.8	0.81	0.82
11	360	1.1	0.84	0.79
12	373	3.2	0.87	0.77
13	388	5.5	0.90	0.74
14	404	2.0	0.94	0.71
15	420	3.0	0.98	0.68
16	432	2.1	1.01	0.66
17	445	3.8	1.04	0.64
18	451	1.9	1.05	0.63
19	470	1.2	1.09	0.61

наблюдаются в процессе первых нагреваний образцов. Циклирование нагрев—охлаждение приводит к значительному уменьшению I_m токов ТСП. Прогревы до 500 К аналогично действуют на I_m токов ТСД. Такая деградация пиков тока ТСД (ТСП) не свойственна последним в высокотемпературной области (400–480 К).

Серии пиков ТСД (ТСП) условно можно сгруппировать по температурным областям: 150-250, 275-335, 340-395, 400-480 К. Их интенсивности сложным образом зависят от режимов предварительных прогревов, температурных границ последних, полярности и величины приложенного напряжения Up и других условий поляризации (T_p, τ_p). В некоторых случаях элементарные пики токов ТСД (ТСП) из указанных температурных областей могут сливаться в сложные интенсивные максимумы ($T_m \approx 246, 310, 373$ и 420 К). Спектры токов ТСД (ТСП) в случае пиков 7, 12, 15 табл. 2 обладают симметрией относительно знака Up. Характерно то, что при нескольких регистрациях термограмм, следующих одна за другой, интенсивности пиков ТСД (ТСП) с T_m < 420 К уменьшаются вплоть до границы чувствительности установки. Такие закономерности токов ТСД (ТСП) типичны для дипольного механизма поляризации.

Расчеты по площади под кривыми ТСД [11] показывают, что концентрации дефектов, принимающих участие в формировании пиков тока ТСД (ТСП), находятся в пределах $10^{16}-10^{17}$ m⁻³. Некоторые другие параметры токов ТСД при соответствующих условиях поляризации сведены в табл. 2. С использованием теории [11] значения энергий активации центров захвата поляризационного заряда (или поворота диполей) E_t , как и в случае ряда галлиевых гранатов [18], оценивались по соотношению

$$E_t \simeq 27kT_m,\tag{8}$$

а оценка значений эффективных частотных факторов ω при допущении кинетики первого порядка проводилась из условия максимума тока ТСД

$$\omega \simeq \left(\beta E_t / kT_m^2\right) \exp\left(E_t / kT_m\right). \tag{9}$$

Заканчивая рассмотрение некоторых закономерностей явлений поляризации в КГГ и его отклика на воздействие внешнего электрического поля, укажем, что типичной петли сегнетоэлектрического гистерезиса в схеме Сойера–Тауэра на частотах $\nu < 1$ kHz при температурах 290–800 К зарегистрировать не удалось.

5. Обсуждение результатов

Экспериментальные результаты позволяют предположить, что КГГ обладает смешанной ионно-электронной проводимостью. Исследования ФЧ КГГ указывают на то, что дырки являются преобладающими носителями заряда. Переход от малых значений энергии активации к большим (T > 450 K) ее значениям (табл. 1) при увеличении температуры свидетельствует о смене преобладающего типа проводимости: электронного по примесным состояниям при низких температурах и значительного вклада σ_i в общую σ при высоких. Оценка границ температурных областей с заметным ионным электропереносом подтверждается результатами, полученными при анализе зависимостей $\varepsilon = f(T)$. В области существования ионной проводимости, согласно (4), при увеличении Т наблюдается быстрый рост є. Возрастание $\varepsilon = f(T)$ обусловлено увеличением концентрации ионных носителей заряда, формирующих объемные электрические заряды. Это вызывает увеличение емкости и в соответствии с (2) диэлектрической проницаемости. В температурной области (T < 450 K) преобладания электронного электропереноса резкие изменения ε , повидимому, следует связать с релаксацией дипольного характера.

В результате исследования кристаллов КГГ использованными методами на фоне медленного температурного роста σ (T = 100-500 K) обнаружена широкая температурная область с богатым спектром релаксационных процессов, реализующихся в узких температурных интервалах. Типичные релаксационные процессы наблюдаются в области температур 300–500 К. В частности, по зависимостям $\varepsilon(T)$ обнаружены характеристические температуры (370 и 450 K), согласующиеся с соответствующими температурами T_m пиков ТСД (ТСП) и аномального поведения двулучепреломления [5].

Термотоки КГГ могут одновременно содержать гомои гетерозарядные пики. Такому формированию поляризационного состояния, вероятно, способствует развитый энергетический спектр локальных состояний и дипольных релаксаторов различной природы, характерный в случае соединений с позиционно неупорядоченной решеткой. Полученные в настоящей работе результаты можно удовлетворительно объяснить, учитывая кристаллохимические особенности кристаллов КГГ, вклад электрически активных дефектов его строения и эффектов поляризации в рамках дипольной и объемно-зарядовой ее моделей. Причем невысоким температурам в случае дипольной поляризации в отличие от классических ориентационных эффектов соответствует, вероятно, малое смещение частиц или же перераспределение электронной плотности, обусловливающее дипольный момент. Иную возможность ориентации электрических диполей обеспечивают вакансии в решетке КГГ.

Структуру КГГ можно описать пространственной группой $D_3^2 = P321$, согласно которой катионы размещаются соответственно четырем точечным позициям: 1а, 2d, 3e, 3f [19]. Тетраэдрические позиции 2d заняты ионами Ge^{4+} , а 3f — заполнены ионами Ga^{3+} и Ge^{4+} в соотношении 8:7. Октаэдрическим позициям 1*a*, имеющим три общих ребра с томсоновскими кубами Зе, соответствуют Ga³⁺ и Ge⁴⁺ в катионном соотношении 2:3. Значит, для данного типа кристаллов характерным является статистическое заполнение позиций (1*a* и 3*f*) ионами Ga^{3+} и Ge^{4+} (ионные радиусы в четверной (0.062) и 0.047 nm) и шестерной (0.054 и 0.040 nm) координациях по кислороду соответственно), что приводит к частичному разупорядочению структуры (композиционному беспорядку). Вместе с несоответствием радиуса ионов Ga^{2+} (0.10 nm) их катионной позиции [19], а также с дефектами нестехиометрии это создает возможность существования различных полярных образований — диполей, случайно ориентированных в исходном состоянии. Практически замороженные диполи при наложении внешнего поля и достижении соответствующих температур активизируются и занимают выгодную ориентацию.

Отметим, что композиционное разупорядочение изучается во многих кристаллах разных типов со смешанной катионной подсистемой. Так, например, в [20–24] различные авторы рассматривают модели электрических диполей, на основе анализа диэлектрической релаксации и аномалий физических свойств обсуждают характер температурных превращений и природу релаксаторов в изучаемых смешанных кристаллах. Кристаллы КГГ, таким образом, можно отнести к представителям нового класса материалов, в которых дипольная релаксация, т. е. система подвижных локлаьных искажений структуры, вносит значительный вклад в аномальное поведение физических параметров матрицы с изменением температуры.

Список литературы

- A.A. Kaminskii, E.L. Belokoneva, B.V. Mill, Yu.V. Pisarevskii, S.E. Sarcisov, L.M. Silvestrova, A.V. Butashin, G.G. Khodzhaguan. Phys. Stat. Sol. (a) 86, 1, 345 (1984).
- [2] А.П. Войтович, А.Е. Носенко, А.Г. Базылев, В.С. Клинов, В.В. Кравчишин, Р.Е. Лещук. ЖПС 59, 4, 705 (1989).
- [3] J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernandez, A. Kaminskii. J. de Phys. IV, 4, 4, C4-353 (1994).

- [4] A.E. Nosenko, R.Ye. Leshchuk, V.V. Kravchishin. Ibid, C4-455.
- [5] А.Е. Носенко, Р.Е. Лещук, В.В. Кравчишин. УРЖ 35, 9, 1315 (1990).
- [6] A.E. Nosenko, V.N. Shevchuk. Charge transfer phenomena in complex oxide crystals. XIII Int. Symposium on the reactivity of solids ISRS-13. Hamburg University (September 8-12, 1996). Hamburg, Germany (1996). Abstr. P. 3-PO-205.
- [7] A.E. Nosenko, V.N. Shevchuk. Electret effects in complex oxide crystals. 9th Int. Symposium of Electrets ISE-9. Tongji University (25-30 September 1996). Shanghai, China (1996). Abstr. P. 3B-P-23.
- [8] А.Е. Носенко, В.Н. Шевчук. ЖТФ 63, 8, 69 (1993).
- [9] А.Е. Носенко, В.Н. Шевчук. УФЖ 30, 1, 1546 (1985).
- [10] А.Е. Носенко, В.Н. Шевчук, А.В. Гальчинский. ФТТ **29**, *2*, 620 (1987).
- [11] Ю.А. Гороховатский, Г.А. Бордовский. Термоактивационная токовая спектроскопия высокоомных полупроводников и диэлектриков. Наука, М. (1991). 248 с.
- [12] В.М. Фридкин. Физические основы электрофотографического процесса. Энергия, М.-Л. (1966). 288 с.
- [13] И.С. Желудев. Физика кристаллических диэлектриков. Наука, М. (1968). 464 с.
- [14] А.А. Потапов. Диэлектрический метод исследования вещества. Изд-во Иркут. ун-та, Иркутск (1990). 256 с.
- [15] И.Ю. Клугман. Электрохимия 32, 3, 382 (1996).
- [16] И.С. Рез, Ю.М. Поплавко. Диэлектрики. Основные свойства и применения в электронике. Радио и связь, М. (1989). 288 с.
- [17] О.Г. Влох, А.Е. Носенко, Р.В. Гамерник, А.И. Билый. Кристаллография 29, 4, 800 (1984).
- [18] A.E. Nosenko, V.N. Shevchuk. Rad. Eff. Def. Sol. 134, 1–4, 251 (1995).
- [19] Физика и спектроскопия лазерных кристаллов / Под ред. А.А. Каминского. Наука, М. (1986). 272 с.
- [20] F. Luty. In: Defects in insulating crystals. Proc. of the Int. Conf. Riga (May 18–23 1981) / Ed. V.M. Tuchkevich and K.K. Shvarts. Zinatne, Riga, Springer-Verlag, Berlin– Heidelberg–N.-Y. (1981). P. 69–89.
- [21] И.Н. Гейфман, И.В. Козлова, Т.В. Синько. ФТТ 36, 2, 284 (1994).
- [22] М.Д. Глинчук, В.А. Стефанович. ФТТ 37, 1, 137 (1995).
- [23] В.Б. Калинин. Неорган. материалы 35, 5, 604 (1995).
- [24] В.В. Леманов, Н.В. Зайцева, Е.П. Смирнова, П.П. Сырников. ФТТ 37, 6, 1854 (1995).