Подвижность носителей заряда в твердом растворе n-Bi $_2$ Te $_{3-x}$ Se $_x$ нестехиометрического состава

(С) В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов, Г.Т. Алексеева

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 21 октября 1996 г.)

Исследованы термоэлектрические и гальваномагнитные свойства твердых растворов n-Bi₂Te_{3-x}Se_x (x = 0.3, 0.36) в интервале температур 80–300 К. Минимальные концентрации носителей заряда (0.8-1) · 10^{18} cm⁻³ были получены с помощью смещения состава твердого раствора от стехиометрического в сторону избытка Те. При таких концентрациях носителей заряда вторая зона в зоне проводимости твердого раствора n-Bi₂Te_{3-x}Se_x не заполнена, что приводит к росту подвижности из-за отсутствия межзонного рассеяния и обеспечивает увеличение термоэлектрической эффективности в области температур 80–120 К.

Термоэлектрические материалы на основе твердых растворов халькогенидов висмута и сурьмы широко применяются при создании различных охлаждающих устройств, работающих в области температур, близких к комнатной. Получение более низких температур, с помощью многокаскадных термоэлектрических охладителей встречает значительные трудности, главной из которых является уменьшение с понижением температуры T величины zT (где z — термоэлектрическая добротность), непосредственно определяющей холодильный коэффициент устройства.

В последние годы интерес к достижению низких температур (130–150 K) с помощью термоэлектрических охладителей стимулировался не только работами по ВТСП-материалам, но и другими исследованиями в области сенсорных устройств. Полученные в процессе этих исследований результаты показали, что для материалов *n*-типа в случае использования их при еще более низких температурах необходимо дальнейшее уменьшение концентрации носителей заряда.

Одним из важнейших параметров, определяющих термоэлектрическую эффективность при данной температуре в области примесной проводимости, является величина $(m^*/m)^{3/2}\mu_0$ $(m^* -)$ ффективная масса плотности состояний, μ_0 — подвижность носителей заряда с учетом вырождения, т — масса свободного электрона). Поведение подвижности в теллуриде висмута и твердых растворах на его основе исследовалось в работах [1–4], в которых при расчете μ_0 использовались как данные измерений всех необходимых гальваномагнитных коэффициентов [1,2], так и результаты измерений только электропроводности и коэффициента Холла [3,4]. Поэтому сравнение имеющихся абсолютных значений подвижности по данным разных авторов не всегда правомерно. Однако температурные зависимости подвижности в Ві2Те3 исследованы достаточно подробно, поскольку концентрация носителей заряда в рассматриваемом интервале температур является постоянной, что позволяет

для определения зависимости $\mu_0(T)$ использовать измерения $\sigma(T)$.

Температурная зависимость электропроводности в случае классической статистики и при преобладающем акустическом рассеянии носителей заряда может быть представлена в следующем виде:

$$\sigma \sim T^{-3/2} m^{*-5/2}.$$
 (1)

В случае произвольного вырождения рассматривается величина σ_0 , рассчитываемая аналогично μ_0 .

Полученные экспериментальные зависимости $\sigma(T)$ в теллуриде висмута с концентрацией носителей $(1-10) \cdot 10^{19} \,\mathrm{cm}^{-3}$ отличаются от $T^{-3/2}$ (в пределах от $T^{-2.0}$ до $T^{-1.2}$), что обычно объясняется слабой температурной зависимостью эффективной массы [5,6]. При более низких концентрациях носителей $(n < 10^{18} \,\mathrm{cm}^{-3})$ в некоторых работах наблюдались более резкие изменения подвижности с температурой: в работе [7] зависимостью m^* , в работе [8] изменение подвижности $\mu_0 \sim T^{-2.8}$ авторы связывали с влиянием рассеяния на оптических фононах, которое может играть существенную роль при температурах ниже температуры Дебая.

В твердых растворах на основе теллурида висмута *п*-типа наблюдаются аналогичные по характеру изменения электропроводности с ростом концентрации носителей заряда. Абсолютная величина показателя степенной зависимости $\sigma(T)$ при равных n уменьшается по сравнению с Bi₂Te₃, что обусловлено дополнительным рассеянием на атомах второй компоненты твердого раствора. Исследования таких известных термоэлектрических материалов, как твердые растворы $n-{\rm Bi}_2{\rm Te}_{3-x}{\rm Se}_x$ (0 < $x \leq 0.3$), ограничивались изучением свойств в области концентраций $n = (1-3) \cdot 10^{19} \, \mathrm{cm}^{-3}$, которые являются оптимальными для температур, близких к комнатным. Материалы указанного типа с низкими концентрациями носителей ($< 10^{18} \, {\rm cm}^{-3}$) практически не изучались, хотя именно эта область концентраций не только

Рис. 1. Температурные зависимости электропроводности σ в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$. x: 1–3 — 0.3, 4 — 0.36.

представляет интерес с практической точки зрения, но и позволяет исследовать специфические особенности рассеяния носителей заряда.

В настоящей работе исследованы термоэлектрические и гальваномагнитные свойства твердых растворов n-Bi₂Te_{3-x}Se_x (x = 0.3, 0.36) в интервале температур 80–300 К. Образцы указанных составов были получены методом направленной кристаллизации в условиях, исключавших возможность концентрационного переохлаждения [9]: температурный градиент на фронте кристаллизации составлял 150–200 К · cm⁻¹, скорость кристаллизации не превышала 0.5 mm/min. Плоскости спайности (0001) в образцах были ориентированы вдоль оси кристаллизации, блочно-кристаллическая структура образцов обеспечивала возможность получения монокристаллов для измерения эффекта Холла.

Для получения минимальных концентраций носителей заряда мы отказались от легирования традиционными донорными примесями (галогениды некоторых металлов и др.) и использовали возможность изменения концентрации носителей с помощью смещения состава твердого раствора от стехиометрического в сторону избытка Те. Этот метод позволяет исключить влияние дополнительного рассеяния носителей заряда, вносимого этими донорыми примесями и особенно существенного при низких температурах, а также обеспечивает получение материалов с контролируемыми значениями концентрации носителей.

На полученных образцах были измерены температурные зависимости (80–300 K) электропроводности, теплопроводности, коэффициентов термоэдс и Холла. При измерениях термоэлектрических свойств тепловой поток и электрический ток были направлены вдоль плоскостей спайности образцов, коэффициент

Рис. 2. Температурные зависимости коэффициента термоэдс α в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$. x: 1-3 - 0.3, 4 - 0.36.

Холла был измерен на монокристаллических образцах при направлениях электрического и магнитного полей, параллельных и перпендикулярных плоскостям спайности.

Электропроводность, теплопроводность и коэффициент термоэдс измерялись стационарным методом, коэффициент Холла определялся в переменных электрическом и слабом магнитном полях [10].

Обычно анализ температурных зависимостей электропроводности, теплопроводности и коэффициента термоэдс проводится в предположении, что преобладающим механизмом рассеяния носителей заряда является рассеяние на акустических колебаниях кристаллической решетки (параметр рассеяния r = -0.5, где *r* — показатель степени в энергетической зависимости времени релаксации $\tau = \tau_0 \mathcal{E}^r$). Такой анализ без учета сложной зонной структуры твердых растворов на основе Bi₂Te₃ позволяет получить ряд качественных результатов. Однако, как было установлено из исследований термоэлектрических и гальваномагнитных свойств в теллуриде висмута и твердых растворах, необходимо использовать эффективный параметр рассеяния $r_{\rm eff}$ [11], интегрально учитывающий особенности как зонной структуры, так и механизмов рассеяния. Для исследуемых материалов величина r_{eff} изменялась от -0.38 до -0.8 в зависимости от состава твердого раствора, температуры и концентрации носителей заряда [11,12].

Температурные зависимости коэффициента термоэдс α и электропроводности σ твердых растворов Bi₂Te_{3-x}Se_x (x = 0.3, 0.36) приведены на рис. 1, 2. Вид зависимостей $\alpha(T)$ и $\sigma(T)$ характерен для твердых растворов на основе Bi₂Te₃. Отличительной особенностью приведенных зависимостей являются высокие значения термоэдс во всем исследованном температурном интервале (кривые 1-3 на рис. 2), что указывает на низкую концентрацию носителей. Для электропроводности наблюдались резкие температурные зависимости в образцах с низкими концентрациями (кривые 1-3 на рис. 1), что связано с ростом подвижности.

Анализ экспериментальных зависимостей $\alpha(T)$ и $\sigma(T)$ проводился в соответствии с выражениями, применимыми для полупроводника в области примесной проводимости при произвольном вырождении,

$$n = \frac{4}{\sqrt{\pi}} \left(\frac{2\pi mk}{h^2}\right)^{3/2} T^{3/2} F_{1/2}(\eta) \left(\frac{m^*}{m}\right)^{3/2}, \qquad (2)$$

$$\sigma = en\mu,\tag{3}$$

$$\mu = \frac{\sqrt{\pi}}{2} \frac{F_{r+1/2}(\eta)}{\Gamma(r+3/2)F_{1/2}(\eta)} \mu_0, \tag{4}$$

где η — приведенный уровень Ферми, $F(r,\eta)$ — интеграл Ферми,

$$F(r,\eta) = \int_{0}^{\infty} x^{r} (e^{x-\eta} + 1)^{-1} dx, \qquad (5)$$

 $\Gamma(t)$ — гамма-функция вида

$$\Gamma(t) = \frac{1}{t} \int_{0}^{\infty} x^{t} \exp(-x) dx = \frac{\Gamma(t+1)}{t}.$$
 (6)

Выражение (1) дает возможность определить параметр $(m^*/m)^{3/2}\mu_0$ из экспериментальных данных по α и σ при определенных предположениях о механизме рассеяния. Для определения подвижности μ_0 и эффективной массы m^*/m необходимо знать величину концентрации носителей заряда, определение которой в анизотропных материалах со сложной зонной структурой кроме измерений эффекта Холла требует дополнительной информации о гальваномагнитных эффектах и механизмах рассеяния. В анизотропных материалах выражение для концентрации носителей имеет вид

$$n = \frac{A(r,\eta)B}{\rho_{123}e},\tag{7}$$

где $A(r,\eta)$ — Холл-фактор, B — параметр анизотропии,

$$B = \left[(\rho_{11}\rho_{1133}/\rho_{123}^2 + 1)\beta(r,\eta) \right]^{-1}, \tag{8}$$

 $\beta(r,\eta)$ — параметр вырождения, $\rho_{11}, \rho_{123}, \rho_{1133}$ — компоненты тензоров сопротивления, эффекта Холла и магнетосопротивления.

На рис. 3 представлены характерные температурные зависимости коэффициента Холла ρ_{123} . Оценки концентрации носителей, проведенные с помощью (7), (8) с учетом концентрационной зависимости

Рис. 3. Температурные зависимости коэффициента Холла ρ_{123} (1-3) и подвижности μ_0 (4-7) в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$. x: 1-6 — 0.3, 7 — 0.36. n (10¹⁸ cm⁻³): 1 — 0.8, 2 — 1, 3 — 4.

B = f(n) [12], для широкого класса твердых растворов на основе халькогенидов висмута и сурьмы показали, что концентрация носителей заряда составляет $(0.8-1) \cdot 10^{18}$ сm⁻³ и совпадает с оценками концентрации, проведенными по зависимостям $\alpha = f(n)$, $r_{\rm eff} = f(n,T)$ [11,13]. Это обстоятельство позволяет не проводить измерения $\rho_{123}(T)$ для всех исследованных составов твердого раствора.

Характер температурных зависимостей $\rho_{123}(T)$ (кривые 1-3 на рис. 3) и величины концентрации nуказывают на то, что вторая зона в зоне проводимости твердого раствора еще не заполнена. Изменение $\rho_{123}(T)$ можно объяснить влиянием анизотропного механизма рассеяния.

Для сравнения на рис. З приведена зависимость $\rho_{123}(T)$ (кривая 3) для твердого раствора Ві₂Te_{2.7}Se_{0.3} при $n = 4 \cdot 10^{18} \, \mathrm{cm}^{-3}$, когда наблюдалось бо́льшее изменение ρ_{123} с температурой вследствие заполнения второй зоны.

Из температурных зависимостей подвижности $\mu_0(T)$ (кривые 4–7 на рис. 3) следует, что величина μ_0 существенно выше в однозонных образцах (кривые 4, 5, 7), что связано с отсутствием межзонного рассеяния. Уменьшение величины μ_0 в Bi₂Te_{2.64}Se_{0.36} (кривая 7) по сравнению с Bi₂Te_{2.7}Se_{0.3} (кривая 4) при разных концентрациях носителей $n \simeq 1 \cdot 10^{18}$ сm⁻³ связано с увеличением вклада примесного рассеяния с ростом содержания второго компонента в твердом растворе.

Рис. 4. Температурные зависимости эффективной массы m^*/m (1-4) и термоэлектрической эффективности z(5-7). x: 1-3, 5,6 — 0.3, 4, 7 — 0.36.

Анализ $\mu_0(T)$, проведенный с учетом r_{eff} , позволил обнаружить некоторые особенности по сравнению с анализом $\mu_0(T)$ для чисто акустического механизма рассеяния. Было показано, что угловые коэффициенты $s = d \ln \mu_0 / d \ln T$ не являются линейными функциями во всем исследованном температурном интервале. Однако для низко- и высокотемпературного интервалов зависимости $d \ln \mu_0 / d \ln T$ могут быть представлены как линейные. Изменение величины |s| происходит вблизи температуры Дебая ($T_D = 156$ K для ${
m Bi}_2{
m Te}_3)$. При $T < T_D |s| = 1.75 - 1.9$, при $T > T_D |s| = 1.2 - 1.3$ в твердых растворах с низкими концентрациями ($n = (1-0.8) \cdot 10^{18} \, \mathrm{cm}^{-3}$). С ростом концентрации носителей ($n = 4 \cdot 10^{18} \, {
m cm}^{-3}$) величины |s| уменьшаются до 1.4–1.6 вследствие роста числа рассеивающих центров.

Значения $|s| = d \ln \sigma_0/d \ln T$ для чисто акустического механизма рассеяния, полученные из температурных зависимостей электропроводности с учетом вырождения, определяющие также угловые коэффициенты температурных зависимостей подвижности, дают некоторые усредненные значения (1.6–1.7) для интервала температур 80–240 К, что согласуется с данными работ [6,8].

Изменение $|s| = d \ln \mu_0/d \ln T$ при температуре, близкой к T_D , указывает на изменение механизма рассеяния: при $T < T_D$ начинает играть роль рассеяние на оптических фононах.

Выражения (2)–(6) позволяют определить кроме подвижности μ_0 эффективную массу плотности со-

стояний m^*/m (кривые 1–4 на рис. 4). Значительное увеличение m^*/m при переходе от образцов с низкими концентрациями (кривые 1–3) и высоким (кривая 4) можно связать с влиянием дополнительной зоны в зоне проводимости твердого раствора с бо́льшей эффективной массой.

Возможность представить эффективную массу m^*/m в виде простой степенной зависимости $m^*/m \sim T^t$ ограничивается только низкотемпературной областью $(T < T_D)$, так как t = f(T). Поэтому определение величины t из температурных зависимостей коэффициента термоэдс α по угловым коэффициентам $d \ln F_{1/2}/d \ln T$ является корректным только в области низких температур. Полученные из зависимостей $m^*/m = f(T)$ величины t при $T < T_D$ равны 0.2 при низких концентрациях и 0.4 при высоких концентрациях.

Увеличение подвижности и эффективной массы в низкотемпературной области (рис. 3,4) приводит к росту термоэлектрической эффективности z, величина которой была определена из измерений α, σ и теплопроводности \varkappa . При T = 80-120 K величина z достигала $(2.2-2.3) \cdot 10^{-3} \,\mathrm{K}^{-1}$ (кривые 5-7 на рис. 4) в образцах твердого раствора ${
m Bi}_{2}{
m Te}_{3-x}{
m Se}_{x}~(x=0.3,0.36)$ с низкими концентрациями $((0.8-1) \times 10^{18} \, \mathrm{cm}^{-3})$, являющимися оптимальными при указанных температурах. Как видно из рис. 4, в чистых образцах Bi₂Te_{3-x}Se_x в низкотемпературной области вместо обычного уменьшения величины z при понижении температуры наблюдается рост z, что указывает на отсутствие межзонного рассеяния. Низкий абсолютный максимум (не более $2.5 \cdot 10^{-3} \,\mathrm{K}^{-1}$) можно объяснить тем, что рассматриваемые концентрации носителей $((0.8-1) \cdot 10^{18} \, \mathrm{cm}^{-3})$ не являются оптимальными при T > 120 К. Необходимо отметить, что для материалов, обычно используемых при комнатных температурах, величина z при 80-120 К составляет $(0.6-1.1) \cdot 10^{-3} \,\mathrm{K}^{-1}$. Таким образом, в образцах n-Bi₂Te_{3-x}Se_x, где нет влияния межзонного рассеяния, можно существенно увеличить значение zT, определяющее эффективность термоэлектрического преобразования энергии.

Список литературы

- O. Beckman, P. Bergvall, K. Tripathi. Ark. Fys. B 28, 3, 215 (1965).
- [2] В.А. Кутасов, Л.Н. Лукьянова. ФТП **23**, 4, 652 (1989).
- [3] J. Black, E.M. Conwell, L. Seigle, C.W. Spencer. Phys. Chem. Sol. 2, 240 (1957).
- [4] C.H. Champness, A.L. Kipling. Can. J. Phys. 44, 4, 769 (1966).
- [5] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. Наука, М. (1972). 320 с.
- [6] J.P. Fleurial, L. Gailliard, R. Tribolet, H. Scherer, S. Scherer, J. Phys. Chem. Sol. 49, 10, 1237 (1988).

- [7] Ю.А. Бойков, О.С. Грибанова, В.А. Данилов, В.А. Кутасов. ФТТ **33**, *11*, 3414 (1991).
- [8] R.W. Ure. Proc. of the Int. Conf. on the Physics of Semiconductors. Exeter (1962). 659 p.
- [9] W.A. Tiller. Crowth and Perfection of Crystals John. Wiley and Sons, Inc., N.Y. (1958). 329 p.
- [10] H. Süßmann, E. Müller. Proc. of the XIV Int. Conf. on Thermoelectrics. St.Petersburg, Russia (1995). P. 1.
- [11] В.А. Кутасов, Л.Н. Лукьянова. ФТТ **26**, *8*, 2501 (1984).
- [12] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 28, 3, 899 (1986).
- [13] Г.Т. Алексеева, П.П. Константинов, В.А. Кутасов, Л.Н. Лукьянова, Т.Е. Свечникова, С.Н. Чижевская. ФТТ **33**, *12*, 3539 (1991).