Новый метод определения координатных зависимостей пиротока в сегнетоэлектрических материалах

© О.В. Малышкина, А.А. Мовчикова, G. Suchaneck*

Тверской государственный университет, 170000 Тверь, Россия * Дрезденский технический университет, 01062 Дрезден, Германия E-mail: Olga.Malyshkina@mail.ru

(Поступила в Редакцию 21 декабря 2006 г.)

Предлагается упрощенный метод определения профиля эффективного значения пирокоэффициента по глубине образца, исключающий сложный математический анализ, связанный с решением некорректных задач. Данный метод позволяет определять состояние поляризации в объеме массивных сегнетоактивных материалов. Апробация метода приведена на образцах коммерческой пьезокерамики РZT.

Работа выполнена при финансовой поддержке программы Министерства образования РНП 2.1.1.3674 и Фонда Herbert-Quandt/ALTANA.

PACS: 77.70.+a, 77.84.-s

1. Введение

Метод тепловых волн широко распространен при исследовании распределения поляризации P(x) по толщине сегнетоэлектрического кристалла. Модуляция тепловой волны возможна различными способами, из которых наиболее распространены два: модуляция импульсами прямоугольной формы [1,2] и синусоидальная модуляция теплового потока [3-6]. Одним из основных методов исследования профиля поляризации в настоящий момент является LIMM-метод [7-13], в котором используется синусоидальная модуляция теплового потока. Для восстановления распределения поляризации по частотным зависимостям пиротока и сдвига фаз между пирооткликом и тепловым потоком в этом случае необходимо решить интегральное уравнение Фредгольма I рода [7-12]. Оно относится к классу некорректных задач, в которых малым возмущениям данных наблюдений могут соответствовать сколь угодно большие возмущения решения. Поэтому для получения распределения поляризации используется метод регуляризации А.Н. Тихонова [8]. Имея в виду гладкость искомого решения, будем отбрасывать осциллирующие высокочастотные решения, не имеющие физического смысла. Но некоторые вопросы, в частности подбор параметра регуляции, остаются открытыми [11-13]. В то же время в работах [14,15] отмечается, что в случае прямоугольной модуляции теплового потока о распределении полярзации в сегнетоэлектрике можно судить по форме пироотклика.

В настоящей работе предлагается упрощенный метод определения профиля эффективного значения пирокоэффициента по глубине сегнетоэлектрического кристалла на основе анализа пироотклика в условиях прямоугольной модуляции теплового потока с использованием цифровых методов обработки сигнала. Предполагается, что толщина образца много меньше линейных размеров поверхности и освещение модулированным потоком происходит по всей поверхности кристалла.

Запись пироотклика на компьютер через аналогоцифровой преобразователь (АЦП) позволяет использовать в эксперименте частоты менее 2 Hz. Это дает возможность исследовать распределение поляризации не только в тонких пленках и поверхностных слоях кристаллов, но и в объеме образцов. Минимальная частота, используемая в эксперименте, определяется тепловыми условиями (тепловая волна не должна достигать тыльной поверхности образца).

2. Теория

Математически прямоугольную тепловую волну удобно представить в виде ряда Фурье [16,17]. Формально волна представляется комплексной функцией, но физический смысл имеет только действительная часть [17–19], поэтому при расчетах необходимо брать действительную компоненту. При синусоидальной модуляции теплового потока (в LIMM-методе) пироотклик определяют обычно синхронным усилителем, который чувствителен только к определенной частоте. Выходной сигнал синхронного усилителя пропорционален отклику заданной частоты, находящемуся в фазе с опорным сигналом. Для исследования фазового сдвига фазу опорного сигнала можно вращать и представить результат в комплексной форме. Таким образом, мнимая часть пиротока определяется сдвигом фаз между тепловой волной и пироооткликом. Она характеризует изменение фазы и амплитуды тепловой волны при ее проникновении в глубь образца. В предлагаемом нами методе пироотклик определяется без учета фазы тепловой волны, а изменение ее характеристик по мере продвижения в образце учитывается введением в расчетные уравнения скорости

температурной волны в теле, равной, согласно [20],

$$u = 2\sqrt{\alpha \pi f},\tag{1}$$

где α — коэффициент тепловой диффузии, f — частота модуляции теплового потока.

Согласно [1], при прямоугольной модуляции теплового потока, когда скорость нагрева постоянна в течение действия светового импульса, для пиротока можно записать

$$I = S\gamma \,\frac{\partial\theta}{\partial t},\tag{2}$$

где S — площадь освещаемой поверхности образца, γ — пирокоэффициент, $\frac{\partial \theta}{\partial t}$ — скорость изменения температуры.

Поскольку по мере проникновения тепловых волн в образец происходит изменение их амплитуды и фазы колебаний, $\Theta \equiv \Theta(x, t)$, где x и t — текущие координата и время.

Согласно [16], в случае прямоугольной модуляции теплового потока для массивных образцов или высоких частот модуляции (т.е. когда глубина проникновения меньше толщины образца) имеет место следующее распределение изменения температуры:

$$\Theta(x,t) = \frac{2\beta_0 W_0}{k} \frac{\tau}{T} \operatorname{Re}\left[\sum_{n=1}^{\infty} \frac{\sin(n\omega\tau/2)}{n\omega\tau/2} \exp(in\omega t) \times \frac{\operatorname{ch}(\varphi_n(d-x))}{\varphi_n \operatorname{sh}(\varphi_n d)}\right] + \Theta_0(x),$$
(3)

где $\omega = 2\pi f$, T = 1/f — период, $\varphi_n = (1+i)\sqrt{n\omega/2\alpha}$, τ — длительность светового промежутка, d — толщина образца, W_0 — плотность мощности теплового потока, β_0 — коэффициент поглощения тепла, k — коэффициент теплопроводности.

Рассмотрим среднее за тепловой промежуток изменение температуры в образце

$$\langle \Theta(x) \rangle = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} \Theta(x,t) dt$$

$$= \frac{\beta_0 W_0}{k} \operatorname{Re} \left[\sum_{n=1}^{\infty} \frac{\sin^2(n\omega\tau/2)}{(n\omega\tau/2)^2} \frac{\operatorname{ch}(\varphi_n(d-x))}{\varphi_n \operatorname{sh}(\varphi_n d)} \right].$$
(4)

Пределы интегрирования в (4) берутся от $-\tau/2$ до $\tau/2$, поскольку в разложении Фурье, используемом для $\Theta(x, t)$, световой промежуток симметричен относительно начала координат [21].

По формуле (4) рассчитана зависимость среднего изменения температуры от относительной глубины (x/d), на которую проникает тепловая волна (рис. 1). Как видно из графика, глубина проникновения зависит от частоты модуляции теплового потока.

Рис. 1. Распределение среднего изменения температуры по глубине кристалла при различных частотах модуляции. Частота модуляции, Нд: *1* — 1, *2* — 10, *3* — 100.

Примем за глубину проникновения тепловой волны в кристалл (l) величину, характеризующую толщину равномерно прогреваемого однородного слоя в стационарно периодическом состоянии [19]:

$$L = (\alpha/2\pi f)^{1/2}.$$
 (5)

Пироток в данном случае можно интерпретировать как пироток слоя глубиной *l*, тогда

$$I(t,l) = \frac{S}{l} \gamma(l) \int_{0}^{l} \frac{d\Theta(x,t)}{dt} dx, \qquad (6)$$

где $\gamma(l)$ — эффективный пирокоэффициент слоя толщиной l.

Из уравнения (1) для скорости тепловой волны следует, что скорость не зависит от глубины проникновения, таким образом, при расчете $\frac{\partial \Theta(t,x)}{\partial t}$ в уравнении (6) можно брать среднее значение скорости в световом промежутке:

$$\frac{\partial \Theta(x)}{\partial t} = \left\langle \frac{\partial \Theta(x,t)}{\partial t} \right\rangle = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} \left(\frac{\partial \Theta(x,t)}{\partial t} \right) dt$$
$$= \frac{4\beta_0 W_0}{kT} \operatorname{Re}\left(\sum_{n=1}^{\infty} \frac{\sin^2(n\omega\tau/2)}{n\omega\tau/2} \frac{i \cdot \operatorname{ch}[\varphi_n(d-x)]}{\varphi_n \operatorname{sh}[\varphi_n d]} \right). \quad (7)$$

С учетом того, что в эксперименте используется преобразователь ток-напряжение (операционный усилитель в режиме короткого замыкания), имеем

$$I \equiv \frac{U}{\mathscr{R}},\tag{8}$$

где U — пиронапряжение, \mathscr{R} — сопротивление обратной связи операционного усилителя.

Регистрация пиросигнала производится в режиме реального времени, т.е. фиксируется U(t). Рассмотрим один полупериод (время, в течение которого происходит воздействие на кристалл теплового потока). Поскольку скорость распространения тепловых волн конечна (1), за время *t* волна проходит на глубину [20]

$$x = ut = 2t\sqrt{\alpha\pi f}.$$
 (9)

Тогда U(t) можно интерпретировать как U(x). В результате из уравнения (2) с учетом (6) запишем для $\gamma(x)$:

$$\gamma(x) = \frac{U(x)kT}{4\Re S\beta_0 W_0} \times \operatorname{Re}\left\{ \left(\sum_{n=1}^{\infty} \frac{\sin^2(n\omega\tau/2)}{n\omega\tau/2} \frac{i}{\varphi_n^2 x} \left(1 - \frac{\operatorname{sh}[\varphi_n(d-x)]}{\operatorname{sh}[\varphi_n d]} \right) \right)^{-1} \right\}.$$
(10)

Таким образом, по данным одного полупериода (имея из эксперимента значения U(t) и соответствующие им значения t) можно рассчитать $\gamma(x)$, для этого перепишем формулу (10) с учетом (9):

$$\gamma(x) = \frac{U(x)kT}{4\Re S\beta_0 W_0} \operatorname{Re}\left\{\left(\sum_{n=1}^{\infty} \frac{\sin^2(n\omega\tau/2)}{n\omega\tau/2} \frac{i}{\varphi_n^2 2t\sqrt{\alpha\pi f}} \times \left(1 - \frac{\operatorname{sh}[\varphi_n(d-2t\sqrt{\alpha\pi f})]}{\operatorname{sh}[\varphi_n d]}\right)\right)^{-1}\right\}.$$
 (11)

В случае когда выполняется условие $\omega > 2\alpha/d^2$, выражение sh[$\varphi_n(d-x)$]/sh[φ_nd] может быть упрощено до следующего вида [10]: exp($\varphi_n(-x)$). В результате для пирокоэффициента имеем

$$\gamma(x) = \frac{U(x)kT}{4\mathscr{R}S\beta_0 W_0} \operatorname{Re}\left\{\left(\sum_{n=1}^{\infty} \frac{\sin^2(n\omega\tau/2)}{n\omega\tau/2} \frac{i}{\varphi_n^2 2t\sqrt{\alpha\pi f}} \times \left(1 - \exp[\varphi_n(-x)]\right)\right)^{-1}\right\}.$$
(12)

3. Эксперимент

По предлагаемой методике нами рассчитан профиль поляризации в образцах коммерческой пьезокерамики PZT (PCM-51, Piezoceram s.r.o., Librice (Чешская Республика). Поляризация образцов с целью оптимизации пьезоэлектрических свойств производилась разными способами: один образец поляризовался равномерно, а другой — так, чтобы получился градиент пьезоэлектрических свойств. Толщина исследуемых образцов составляла 1 mm. Образцы сканировались тепловой волной частотой 1 Hz. Источником тепла являлся ИК-диод с длиной волны 930–960 nm, модуляция которого осуществлялась прямоугольными импульсами с помощью

Рис. 2. Распределение пирокоэффициента в образцах пьезокерамики РZT, поляризованных различными способами. *a* — равномерно, *b* — с целью получения градиента пьезоэлектрических свойств.

генератора сигналов специальной формы G6-28 и преобразователя мощности. Пироток преобразовывался в напряжение операционным усилителем ОР297, рабочая частота которого при используемом в эксперименте коэффициенте усиления 250 V/µA составляет 1000 Hz. Запись сигнала осуществлялась 12-битным аналогоцифровым преобразователем ЛА-70М4 с частотой дискретизации 13 kHz. Измерения проводились с двух противоположных сторон образца, затем с использованием программы МАТСАД рассчитывались координатные зависимости пирокоэффициента, полученные кривые "сшивались" на середине образца. Результаты представлены на рис. 2. Как видно из графиков, метод способен охарактеризовать распределение поляризации в образцах, поляризованных различными способами. Это позволяет почувствовать различия в процедуре поляризации сегнетоэлектрических материалов и дает возможность контролировать характер распределения поляризации в образце и подбирать оптимальные режимы поляризации керамики внешним полем. В дальнейшем предполагается применение разработанного метода для исследования старения пьезокерамик, легированных различными примесями.

Список литературы

- [1] A.G. Chynoweth. J. Appl. Phys. 27, 76 (1956).
- [2] A.G. Chynoweth. Phys. Rev. 102, 705 (1956).
- [3] R.B. McQuistan. J. Opt. Soc. Am. 48, 63 (1958).
- [4] S.T. Liu, J.D. Heaps, O.N. Tufte. Ferroelectrics 3, 281 (1972).
- [5] Л.С. Кременчугский. Сегнетоэлектрические приемники излучения. Наук. думка, Киев (1972). 234 с.
- [6] S.B. Lang. Sourcebook of pyroelectricity. Gordon and Brech Sci. Publ., N.Y.-London-Paris (1974). 562 p.
- [7] S.B. Lang, D.K. Das-Gupta. Ferroelectrics 39, 1249 (1981).
- [8] Н.М. Бездетный, А.Х. Зейналы, В.Е. Хуторский. Изв. АН СССР. Сер. физ. 48, 200 (1984).
- [9] S.B. Lang, D.K. Das-Gupta. J. Appl. Phys. 59, 2151 (1986).
- [10] B. Ploss, R. Emmerich, S. Bauer. J. Appl. Phys. 72, 5363 (1992).
- [11] T. Sandner, G. Suchaneck, R. Koehler, A. Suchaneck, G. Gerlach. Integrated Ferroelectriecs 46, 243 (2002).
- [12] S. Bauer, S. Bauer-Gogonea. IEEE Trans. Dielectr. Insul. 10, 883 (2003).
- [13] S.B. Lang. J. Mater. Sci. 41, 147 (2006).
- [14] Ю.Н. Захаров, С.Г. Гах, В.З. Бородин, Э.М. Пикалев, Б.Ц. Шпитальник, А.М. Блохин. В сб.: Полупроводники сегнетоэлектрики. Изд-во Ростов. ун-та (1973). С. 133.
- [15] O.V. Malyshkina, A.A. Bogomolov, M.M. Major. Ferroelectrics 182, 11 (1996).
- [16] H.I. Zajos. Ferroelectrics 56, 265 (1984).
- [17] Г. Карслоу, Д. Егер. Теплопроводность твердых тел. Мир, М. (1964). 488 с.
- [18] Л.Д. Ландау, Е.М. Лифшиц. Механика сплошных сред. ГИТТЛ, М. (1953). 788 с.
- [19] А.С. Телегин, В.С. Швыдкий, Ю.Г. Ярошенко. Тепломассоперенос. Академкнига, М. (2002). 456 с.
- [20] В.Н. Луканин, М.Г. Шатров, Г.М. Камфер. Теплотехника. Высш. шк., М. (2005). 672 с.
- [21] Г. Корн, Т. Корн. Справочник по математике. Наука, М., (1973). 832 с.